
UNCLASSIFIED 

AD 298 744 

if Ute 

ARMED SERVICES TECHNICAL INFÖRMAnON AGENCY 
ARLINGTON HALL STATION 
ARLINGTON 12, VIRGINIA 

-'■ 

UNCLASSIFIED 

^'^.,w,«..w,M,.,,,,w>rJww<itii^ 



NOTICE: When government or other drawln&s, speci- 
fications or other data are used for any purpose 
other than In connection with a definitely related 
government procurement operation, "Che U. S. 
Government thereby Incurs no responolMlity, nor any 
obligation whatsoever; and the fact that the Govern- 
ment may have formulated, furnished, or in any way 
supplied the said drawings, specifications, or other 
data is not to be regarded by implication or other- 
wise as in any manner licensing the holder or any 
other person or coiporation, or conveying any rights 
or permission to manufacture, use or sell any 
patented Invention that may in any way be related 
thereto. 



T. ..... .. --·· . 

Best 
Available 

Copy 



t- 
oo 
Oi 

CM 

CO 
O   CD 

298 744 
ONR REPORT ACR-63 

INTRODUCTION TO ACOUSTICAL 
SPACE-TIME INFORMATION PROCESSING 

ALAN A. WINDER 

CHARLES J.  LODA 

Edo Corporation 
College Point, New York 

January 1963 

.. 

OFFICE OF NAVAL RESEARCH 
Department of the Navy 

Washington, D.C. 

är\ 

^•ippfe« 



PREFACE 

During the past two decades much attention has been directed to- 
ward the development, use, and analysis of acoustical information sys- 
tems for a wide range of applications. The requirements of these sys- 
tems have become increasingly complex and the research associated 
with them has produced a wealth of experimental data, instrumentation, 
ai>d theoretical analyses. Further, advances in circuit system and in- 
formation theory have provided additional tools for use directly or in- 
directly in the solution of problems associated with these requirements. 

Despite the availability of these theoretical tools and instrumenta- 
tion, many critical problems remain. The need is therefore evident for 
improving methods of describing and analyzing complex information 
processes, both to assist in the selection of measuring instrumentation 
and in the design of acoustical systems. 

Typical problem areas are those associated with sonar. Here there 
is frequently a need for simultaneously fulfilling a number of functions 
such as the determination of the existence of a number of signal sources, 
their localization, isolation in space, and their identification. Analytical 
methods must describe quantitatively the effectiveness of ferforming 
these functions within the limitations imposed by such constraints as 
power, time, bandwidth, and spatial extent. Additional constraints al- 
most invariably arise from lack of complete knowledge regarding the 
space-time characteristics of the boundaries and other characteristics 
of the medium in which the system must operate. These uncertainties 
must be understood and preferably should be an explicit part of the 
analysis. Beyond this, logistic factors such as complexity and relia- 
bility require consideration. Similar problems arise in radar, optics, 
radio astronomy, and many other areas, but associations arc compli- 
cated by complex and specialized terminologies. 

This document has been prepared by the authors under Office of 
Naval Research sponsorship. It presents an introductory study of the 
interrelations among techniques which are presently available and cut- 
lines some of the problem areas for which existing methods are not 
applicable. Hopefully it will serve as a guide and stimulant for the 
additional work required to solve the many difficult problems which 
remain. 

Washington, D. C. 
October 1962 

Aubrey Vi. Pryce 
Director, Acoustics Programs 

Office of Naval Research 
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INTRODUCTION 

This survey attempts to provide guidelines within which analytical and instrumental 
aspects of multidimensional information-processing may be examined.  In all practical cases, 
a large number of processing procedures are permissible, and a large number are, in fact, 
necessary.  It would be desirable to have rules for determining quantitatively the most eco- 
nomical, or the most effective of the techniques.  However, their formulation is not easily or 
simply done, and discussions of only a few introductory facets comprise this entire volume. 

The distinguishing feature of the work is the attempt made to bring together analytical and 
instrumental tools which appear to be of value In improving the understanding of problems 
associated with multidimensional, acoustical information processes, particularly those requir- 
ing both time and space variables for their descriptions.  Complete and unified treatment has 
not been possible and consequently the survey should be considered as an introduction to prob- 
lems rather than as a detailed exposition of solutions. 

Contemporary literature of communications, detection, and information theory, and the 
rapid evolution of radar and communication systems reflect the greater effort in electromag- 
netic areas relative to acoustics.   Until recently, point-to-point transfer of information had 
been the major concern in electromagnetics.   The bulk of analytic work is still characterized 
by having spatial details elided or analyzed separately in noninformational terms.   There are 
many pragmatic reasons for this, since complete space-time representations may become 
prohibitively complex, and in fact, for some applications such analysis may not be justified. 
Despite the complexity it is necessary to attempt consolidating basic concepts which are 
associated with multidimensional processing. 

It is important first to recognize some of the factors which have influenced the evolutionary 
trends of electromagnetic and acoustic information systems such as radar and sonar.  In sonar, 
the relatively low velocity of propagation of energy in conjunction with the use of audio frequen- 
cies established requirements for spatially-complex systems such as highly directional, multi- 
beam transmission and reception.   These systems were required in order to overcome low 
data rates and to reduce the effects of the many sources of interference within the medium, 
including the effects of multiple-path propagation.   The use of low frequencies facilitated the 
early development of components permitting electronic beam-forming of large arrrys.  In 
electromagnetics, the propagation velocity provided inherently high data rates and electronic 
beam forming was not considered an important requirement and in fact was not realizable until 
recently.  The advent of high-speed radar targets imposed increasingly severe functional 
requirements necessitating extremely large transmitting and receiving arrays, high power, and 
complex waveforms.   Limitations on the performance of many electromagnetic systems - radar 
and communications - are now no longer solely attributable to stationary noise processes 
within the receiver, but arise from external Interactions with a complex environment.  Since 
these problems have characterized sonar from its earliest days to the present, performance is 
not to be evaluated simply, in threshold detection terms alone, but involves fulfillment of a 
number of functions, such as resolving and tracking multiple targets having a wide range of 
levels.  Other features may include distinguishing spatial extent and shape, and temporal 
changes of these characteristics.  In terms of equipment economy, operational necessity, or 
under environmental conditions where propagation characteristics may be time-varying, many 
ot the operations are to be performed simultaneously or in rapid sequence.  Not all of the 
functions may be performed independently, and determining the nature of constraints comprises 
an important element in the understanding of physical processes and system analysis.  Under 
the joint influence of technological advances and stvere performance requirements many prob- 
lems within previously unrelated areas such as optics, communications, radio astronomy, 
radar, and sonar have converged.  An interchange of ideas and techniques may now be possible, 
and, hopefully this document will facilitate such an interchange. 



At one time, information theory was regarded as a potential unifier which would provide 
solutions of problems within several areas in terms common to each of them.   Unfortunately, 
this has not completely materialized since unifying philosophies have an unfortunate tendency 
to become highly specialized subjects in themselves, thereby compounding rather than easing 
the problems of interdisciplinary translations.  Although this tendency exists, it is not the sole 
difficulty associated with unification.  Despite morphological similarities which appear within 
manv areas, fundamental differences also exist, and a detailed understanding of the physical 
processes within each area always remains as an important requirement.  Analytical models 
applicable within one area may inadequately represent physical processes in other areas.   The 
inadequacy may arise from assumptions made to simplify analysis, or the models may be so 
complex that physical properties are obscured.  As a result, the evolution of instrumentation, 
measurement procedures, and of systems may be misdirected, or may be unduly influenced by 
gadgeteering when analytical models are completely ignored.  This survey is intended to 
reflect a belief that improved understanding of information processing can result from a 
blending of mathematics which describes real physical processes and contains an attitude 
toward mathematics and instrumentation which makes them each contributing, rather than 
controlling, components of the blend. 

A brief review of the organization which has been followed will be presented.   Because of 
the strong interrelaüonship which exists among the topics of the survey it is difficult to develop 
their signUicance in a satisfying, logical sequency.   The major topics include analytical 
descriptions of the structural details of functions and physical elements, discussions of infor- 
mation processes, and an introduction to system analysis.   Representations of functions may 
not be detached from element analysis, which in turn, is strongly associated with information 
and decision theory.  Emphasis on the analysis of components tends to obscure system con- 
siderations wherein interrelationships - including the order in which components are "Scum- 
bled - may have an importance equal to or greater than the characteristics of componeu 3 
considered in isolation. 

Initially, analytical representations of functions are discussed illustrating some of the 
many methods which are available for representing structural detail of functions.  Of impor- 
tance are the dual requirements for matching descriptions to the characteristics of the func- 
tions  Including bounds which are Imposed, while taking Into account the use which is to be 
made of the representation.   The Intent may be to Improve understanding or visualization of a 
problem, to facilitate computations, or to make the ultimate realization of Instrumentation 
more economical.  No single class of representations can be expected to fulfill each of these 
requirements optimally.  Consequently, a large number of methods have been developed. 
Rigorous and exact procedures cannot be formulated for the selection of a method for a par- 
ticular problem, but there are certain invariant features which, when recognized, serve as 
useful guidelines. 

The methods of Fourier ?,.ialysis serve as an Important introduction.  Such methods are 
regarded from the beginning not merely as procedures associated with harmonic analysis, but 
as basic techniques for the transformation of variables.  Representations, sampling, and 
trs'sfor options are seen to be related operations with an important common characteristic 
being a conversion of structural detail with the Intent to simplify functions or to reduce the 
coraplexlty of operations on the functions.  Not only analysis Is to be simplified - there may be 
a preferred domain or structure for physical realization and measurement.  Measures of 
completeness, of conservation, or Invarlance must be applied, since simplification Is not a 
sufficient criterion for quantitative analysis.  Since two or more domains may be Involved, the 
correlation of errors of analytical approximations, and of measurement must be known or 
established among them.   Fourier representations Inherently Involve mean-square-error as a 
criterion  and when the structural components represent amplitudes of physical variables, then 
measures of completeness are m energy terms.   Properties of Fourier transforms and the use 
of Fourier related description^ for deterministic and random processes are outlined.   These 
include autocorrelation functions, power spectra, probability density functions, and r.haracter- 
istlc functions.   The use of statistical descriptions may arise In several ways.  The only infor- 
mation available or obtainable may be statistical, or the complexity associated with the use of 
deterministic descriptions may be such that statistical analysis Involving a reduction of 
dimensionality Is a practical necessity.  Additional descriptions Involving joint relationships 
are required as the number of independent variables increases - these may include 
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crosscorrelation functions, cross-power spectra, joint probability density functions, and joint 
characteristic functions. The concepts of linear and statistical independence, coherence, and 
of orthogonality are discussed. Properties of gaussian distributions are seen to have special 
significance in multidimensional problems. 

Although time is implicitly and explicitly involved as an independent variable in the 
preliminary discussions, the same procedures may be extended to include spatial problems. 
Spatial sampling concepts apply directly in one or two dimensions.   Representation of a 
radiated field associated with discrete radiators may be made with Fourier series with the 
element excitation acting as the coefficients in the series.  For continuous radiators the field 
can be expressed as the Fourier transform of the amplitude distribution.   The resulting 
equations are valid at large distances from the radiating aperture and when the distribution 
does not vary too rapidly in intensity in terms of the wavelength of radiation. 

Procedures related to the representation of functions are used for descriptions of physical 
elements.  Earlier it was indicated that the two topics are closely related.  A specific example 
of this relationship is the description of time-bounded functions in which the characteristics of 
the function generator are used as an integral part of the representation.  Element analysis 
requires determining the relationship between the input and output.   Specific uses of the super- 
position integral and system function - being time and frequency structural representations of 
elements - are given.   Such descriptions are related through the Fourier transform.  Element 
analysis and synthesis include not only measures of completeness, but also of physical real- 
izability and stability.   Choice of the representation may be influenced by additional consider- 
ations required when multiple elements are involved. 

Related problems are discussed which arise in the analysis of spatial elements. Optical 
imaging elements may be treated as two-dimensional space-frequency filters and techniques 
of circuit theory may be applied to their analysis.   Descriptions corresponding to the impulse 
response and transfer function are the point source response and the transfer function.  The 
transfer function descrioes the contrast reduction for a series of sinusoidal patterns of 
increasing spatial frequency.   Here, too, one domain may be preferred for analysis or meas- 
urement.  In optics, it is often more convenient to measure the reduction in contrast of a 
periodic test object than to determine the light distribution in an image. 

Although similar concepts may be employed in antennae design, greater complexity arises 
in conjunction with the availability of the spatial dimensions and time as an additional variable. 
Normally, reflector antennae and two-dimensional arrays may be regarded as space filters 
and their analysis may be effected by linear, time-invariant network theory.  However, if use 
is to be made of the additional dimensions, then the analysis is more complex.   The equivalent 
network is time-varying with the output being a function of the modulation of the antenna 
parameters and the input signal.  However, multiplicity of spatial patterns will be available, 
each pattern comprising, in a sense, an independent information channel.   The greater dimen- 
sionality available in array design may also involve operations in the near and far fields, both 
in transmission and reception.  Additional degrees-of-freedom may be obtained from the use 
of polarized radiation.   However, their utility may be determined only after careful analysis 
has established the nature of the dependencies within the various domains. 

In order to illustrate some of the types of constraints which may arise in representations 
of structure a few basic examples are discussed in detail.  It is important to recognize that, 
in general, the number and type of structural components are not intrinsic properties of a 
particular problem but are actually functions dependent on the mode of representing or defining 
the problem.  Earlier it was stated that imposing bounds on functions had influence on the type 
of representation which could be used.   For example, when a common point of origin in time 
does not exist, phase Information may not be significant, and descriptions such as power 
spectra, autocorrelation functions, or low-order statistical moments may be used.  If the 
process is bounded, however, important restrictions may arise.  Concepts as instantaneous 
power spectrum and spectral correlation are reviewed.   Spectral correlation, for example, 
permits distinguishing between a random function and one which is switched on end off period- 
ically.  Bounds imposed jointly in conjugate domains involve additional constraints, and the 
descriptions, 'or example, of time and bandlimited functions is found to be dependent on the 
manner in which the effective "occupancy" in the time and frequency domains has been defined. 



For some problems it is desirable to have the product of the time and frequency occupancy a 
minimum.  Spectrum analyses of transient signals, and simultaneous measurements of fre- 
quency and time of arrival of pulsed signals, are required in many problems.  A common 
characteristic of such descriptions and operations is that an indeterminancy exists v/hich 
imposes a limit on the number of independent structural components.  One method of describ- 
ing the indeterminancy is by a joint autocorrelation function.   This function indicates that 
although the distributions within the joint domains   may be altered by nonsimultaneous, that is, 
sequential operations, the structure defined by this function is invariant to combined displace- 
ments in time and frequency.  Similar relationships occur in spatial problems involving bounds 
on aperture distributions and the angular spectra associated with the radiated energy.   Bounds 
imposed jointly set limits on the resolving power and rejection of an antenna or lens.  Other 
indeterminate relationships exist, for example, the formation of •  . image in an optical system, 
or a reflector antenna is a function of time.  In order to establish the steady-state image or 
directivity pattern, the length of a pulse must be at least as long as the aperture.   Since the 
pulse length represents a measure of range resolution there exists a limiting value of the 
combined angular and range resolution.   Increasing aperture size to improve angular resolu- 
tions may decrease range resolution.  It is of interest to note that human performance exhibits 
similar characteristics when subjected to multiple tasks.   The span of absolute judgement is a 
term applied to the description of the structural detail which may be performed.  Different 
limiting values or spans result depending on whether the challenge is in a single mode or in 
two or more modes simultaneously.  In quantum mechanics, a number of "uncertainty relation- 
ships" have been defined.   These give the limits associated with simultaneous operations on 
canonically conjugate variables.   Recognition of the relationship has provided valuable con- 
ceptual and quantitative guides in modern physics.  Studies of constraints associated with 
multiple, simultaneous operations associated with Fourier-related variables are playing an 
increasingly important roll in information processing. 

Preceding discussions are concerned with descriptions of structural aspects only.  The 
one concept which was stressed involved determining the number of degrees-of-freedom which 
may be required - or which may be available and, up to this point, explicit.   Considerations of 
the physical environment have not been necessary since structural detail may be specified 
a priori    It is this factor which permits formulating and solving problems in communications, 
optics   radar, sonar and radio astronomy by analogous methods.   It is also Indicated that some 
understanding of the physical processes is required, particularly in spatial problems s-nce a 
direct correspondence does not exist among the several areas.   The full importance of detailed 
understanding of the physical processes arises when the totality of information is analyzed - 
including not only structure but also the range of observable values which can be associated 
with the structure.  There are a number of representations of information, and their complete 
review would transcend the scope of this work and hence only a few basic facets are discussed. 

Structural representations were discussed without reference to the disturbing influence of 
noise or experimental errors.  Measures of completeness were seen to be related to the 
presence of bounds, including those jointly imposed on conjugate variables.   The number of 
i itervals which can be observed or measured within a structural representation, however, will 
be limited by thermal noise occurring at some stage of the observation process.   The total 
information will consist of the number of discernible points within the complete structure - 
which may Include space and time variables.   This measure constitutes the total number of 
steps required for Identifying or selecting a representation from an ensemble of possible 
representations.  It also constitutes a measure of the Information obtained from a measure- 
ment    Measurements are characterized by a number of limitations which always put a finite 
bound on Information.   Infinitely fine structural detail cannot be physically observed because 
bounds limit resolution, and the detail within the structure Is limited to finite values because 
of the unavoidable presence of errors or noise.  Structural "noise" may also occur, for 
example, In conjunction with time-varying propagation parameters.  Important aspects of 
informational processing require determining information content, information rate, or mtor- 
matlon density, relating these measures to the fulfillment of specific functions, and establish- 
ing measures of cost or efficiency.   The total, complete evaluation is dependent on the nature 
of the bounds Imposed on the problem, and on the characteristics of the physical environment. 
For multidimensional problems, complex interrelations may exist and decision theory rules are 
required to establish quantitative assessments. 



In order to illustrate the use of these concepts a number of informational processes are 
discussed.   These include filtering operations with the desired and undesired information 
assuming a variety of structures.   Problems associated with multiple, matched filtering and 
analogies in spatial processes are discussed.  Combined space-time operations are also out- 
lined.   These problems have been selected from a number of areas in order to illustrate 
similarities and differences within acoustics and electromagnetics.   An introduction to system 
problems within the several areas is also made with emphasis on the relationships of infor- 
mation sources, the propagating medium, and receivers.   Finally, a summary review is 
presented for acoustics and electromagnetics using the major topics of the survey as the 
organizational elements. 

A large amount of detail is presented; a vastly greater amount has been omitted.  Although 
it is difficult to present generalized evaluations of significance, there are some features which 
deserve reemphasis.   The ultimate use of information processing involves making decisions 
based on measurements of physical processes.  The processes of interest in this survey are 
characterized by large dimensionality - specifically involving spatial and temporal variables. 
Information processing requires sequences of many transformations from the physical to the 
decision environment.   The transformations are made to effect simplification and may involve 
reduction of dimensionality, or matching.  Quantitative measures are required to establish 
their effectiveness, and in order to simplify analysis it may be necessary to apply several 
criteria in the analysis of complex system problems.   These criteria may include energy 
transfer, information conservation, or a number of statistical decision rules.  An important 
key to multidimensional analysis involves determining the degree and nature of dependencies 
which constrain the effectiveness of the processing.   The existence of bounds such as finite 
time, spatial extent, bandwidth, energy, and the presence of noise all combine to limit the total 
information.   Representations of structural detail, since these details are specifiable a priori, 
may be made by analogous methods for many acoustic and electromagnetic processes per- 
mitting an interchange of analytical and instrumental techniques in areas such as opticSj 
circuit theory, radar, radio astronomy, and sonar.   However, for complete analysis it is 
necessary to consider the totality of information which involves detailed a posteriori knowledge 
of the environment, and to provide a quantitative assessment of effectiveness and costs asso- 
ciated with the processing. 

Unfortunately it is necessary to consider specific system problems individually.   However, 
some elements of the philosophy contained may be useful in minimizing time and effort spent 
searching for improvements of components when performance may be inherently constrained 
by the bounds which have been imposed on the problem.   Under such conditions the philosophy 
outlined in the survey would suggest a diversion or search for other domains where additional 
degrees of freedom may be obtained.  The synthesis of large antennal structures by the motion 
of simple elements as has been performed by radio astronomers and in surveillance radar 
comprise excellent examples of the concept and of the constraints on such operations.  Numer- 
ous other examples are discussed in the text.  It is evident that some oi the fundamental dif- 
ferences between acoustical and electromagnetic processes which exist may be used to 
advantage in information processing through the combined use and Interaction of acoustical 
and electromagnetic energy. 

The individual elements described by this survey are not original.  The significance of the 
work consists in its organization, that is, in the attempt made to trace systematically basic 
mathematical and physical concepts which characterize space-time information processing. 
Many of the actual descriptions are in themselves quite familiar.  In many instances, individual 
descriptions and illustrations have been taken directly from reference works and exact and 
complete acknowledgment may not have been made in all instances.   The document may con- 
tribute little to specialists or to the fortunate individuals who have already developed their own 
philosophy of information processing.   Hopefully it may be of some value as a guide tc indi- 
viduals who lack the considerable time which is required to develop their own philosophy by 
wading through the voluminous literature currently available. 

The following references have been helpful in establishing the basic concepts which have 
been described in the introduction. 



1, R. B. Lindsay, H. Margenau, "Foundations of Physics," Chapters 1, 2, 3, John Wiley and 
Sons, 1936 

2. H. Margenau, "The Nature of Physical Reality," Chapters 5. 7, 9, 12, 18, 20, McGraw-Hill, 

1950 

3    C. G. Darwin, "Observation and Interpretation," pp. 209-18, from book of same title edited 
by S. Korner, Butterwörths Scientific Publication, 1957 

4.  C. H. Page, "Physica1 Mathematics," D. Van Nostrand, 1958 

5    E   P  Wiener, "The Unreasonable Effectiveness of Mathematics in the Natural Sciences": 
Comm. on Pure and Applied Mathematics, Vol. XIH No. 1, February 1.960 

6. L. Brillouin, "Science and Information Theory," Chapters 8, 12, 14, 15, 16, 20, Academic 
Press, 1956 

7. L. Brillouin, "Mathematics, Physics, and Information," Information and Control Vol. 1, 
No. 1, September 1957 

8. R. Vallee, "A Note on Algebra and Macroscopic Observation," Information and Control 
Vol. 1, No. 1, September 1957 

9. Y. Bar-Hillel, "An Examination of Information Theory," Phil. Sei. Vol. 22, pp. 86-105 
(1955) 

D. Gabor, "Communication Theory and Physics," I.R.E. Inf. Theory Trans., February 

1953 

D. M. MacKay, "Quantal Aspects of Scientific Information," Philosophic     Magazine, Vol. 
41 Ser. 7, No. 314, March 1950 

J  L  van Soest, "Some Consequences of the Finiteness of formation," Proc. of Sympo- 
sium on Inf. Theory, Butterwörths Scientific Publications (1955) 

H. Quastler, "Studies of Human Channel Capacity," Proc. of Symposium on Int. Theory, 
Butterwörths Scientific Publications (1955) 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21 

S. Goldman, "Information Theory," Chapter 9, Prentice Hall, 1953 

J. Rothstein, "Information. Organization, and Systems," Inf. Theory Trans., Sept   nber 

1954 

W  H  Huggins, "Representation and Analysis of Signals," Part VH, Signal Detection in a 
Noisy World, AFCRC-TN-60-360, September 1960 

W. H. Huggins, "Signal Theory," IRE Trans, on Circuit Theory Vol. CT-3, No. 4, Decem- 

ber 1956 

E. E. David, Jr., "Signal Theory in Speech Transmission," IRE Trans, on Circuit Theory, 
Vol. CT-3, No. 4, December 1956 

C   H. Page, "Applications of the Fourier Integral In Phvsical Science," IRE Trans, on 
Circuit Theory, Vol. CT-2, No. 3, September 1955 

,  R. M. Lerner, "Design of Signals," Lectures In Communication System Theory, McGraw 
Hill Book Co., 1961 

R. M. Lemer, "Representation of Signals," Lectures in Communication System Theory, 
McGraw Hill Book Co., 1961 

..  * 

  



22. W. E. Morro-v, Jr., "Channel Characterization:   Basic Approach," Lectures in Communi- 
cation System Theory, McGraw Hill Book Co., 1961 

23. W. M. Siebert, "Signals in Linear Time-Invariant Systems," Lectures in Communication 
System Theory, McGraw Hill Book Co., 1961 

24. D. G. Brennan, "Probability Theory in Communication System Engineering," Lectures in 
Communication System Theory, McGraw Hill Book Co., 1961 

25. D. A. Bell, "Information Theory and its Engineering Applications," Chapters 2, 3, 8, Sir 
Isaac Pitman and Sons, 1957 

26. P. M. Woodward, "Probability and Information Theory with Application to Radar," 
Pergamon Press (1957) 

27. D. McLachlan, Jr., "Description Mechanics," Information and Control, Vol. 1, No. 3, 
September 1958 

28. R. Madden, "The Indeterminancies of Measurements Using Pulses of Coherent Electro- 
Magnetic Energy," PIEE, Part C, March 1961 

29. F. P. Adler, "Minimum Energy Cost of Observation," Inf. Theory Trans., Vol. 1T-1, 
September 1953 

30. D. M. MacKay, "The Structural Information Capacity of Optical Instruments," Information 
and Control, Vol. 1, No. 2, May 1958 

31. F. J, Zucker, "Summary Comments," Proceedings of Symposium on Communication 
Theory and Antenna Design, Jan. 1957 

32. P. Elias, "Optical Systems as Communications Channels," Proc. of Symposium on Infor- 
mation Networks, April 1954 

33. J. S. Burgess, "The Future of Radar," Trans, of Milit. Elec, April 1961 

34. W. M. Siebert, "A Radar Detection Philosophy," IRE Trans, on Inf. Theory, Vol. IT-2, 
September 1956 

35. R. N. Goss, "A Survey of the Detection Problem," USNEL Research Report 734, 18 Jan. 
1957 

36. J. L, Stewart and E. C. Westerfield, "A Theory of Active Sonar Detection," PIRE, May 
1959 

37. J. Ide, "Development of Underwater Acoustic Arrays for Passive Detection of Sound 
Sources," PIRE, May 1958 

38. E. Eichler, "Limitations of Angular Radar Resolution," Proc. of Cont. of Milit. Elect., 
1960 

39. H. E, Shanks and W. R. Bickmore, "Four-Dimensional Electromagnetic Radiators," Can, 
Journal of Physics, Vol. 37, 1959 

40. H. Gano, "An Aspect of Information Theory in Optics," 1960 Conv. Record, Part 4, Auto. 
Cont., Inf. Theory 

41. H. Wolter, "On the Application of the Basic Theorem of Information Theory to Optics," 
Physica, Vol. 24, No. 6, pp. 457-75 (1958) 

42. G. Toraldo Di Francia, "Capacity of an Optical Channel in the Presence of Noise," Opt. 
Acta Vol. 2, No. 1, April 1955 



8 
43    G  Toraldo Di Francia, "Supergain Antennas and Optical Resolving Power," Suppl. Nuovo 

Cimento, Vol. 9, pp. 426-438 (1952) 

44. E. L. O'Neill, "Spatial Filtering in Optics," IRE Trans, on Inf. Theory, June 1956 

45. O. J. M. Smith, "Mixed Distributed and Lumped Parameter Systems," WEscon Conv. Rec, 
Part 2, 1957 



A.    REPRESENTATIONS OF  FUNCTIONS 

1,   DETERMINISTIC ANALYSIS 

INTRODUCTION 

The intent of the initial section of the survey is to discuss various analytical methods for 
representing some of the functions which are important in information processing.  It is 
neither possible nor desirable to present completely the many facets, and only a few aspects 
which illustrate basic attitudes will be discussed. 

Two requirements are involved when representing structural detail of functions.  The 
description must "match" the characteristics of the function and the use which is to be made 
of the representation.   The latter may involve improving understanding or visualization of a 
problem, facilitating computations, or making the ultimate realization of instrumentation more 
economical.  No single class of representations may be expected to fulfill each of these 
optimally, and a large number of methods have been developed.  Although rigorous procedures 
cannot be formulated for the selection of a method for a particular problem, some useful 
guidelines exist. 

Fourier analysis constitutes an important introduction to the methods of representing 
functions, not only historically, but as a basic and useful technique.  It is to be regarded as 
more than harmonic analysis, incorporating the fundamental concepts of a transformation of 
variables — that is, the conversion of structural detail with the intent to simplify functions or 
to reduce the complexity of operations on the functions.   The simplification may involve not 
only analytical operations but there may be a preferred domain or structure for measurement 
or physical realization.  Since simplification is not an adequate criterion for quantitative 
analysis, measures of completeness must be applied.  Fourier representations inherently 
involve mean-square-error as a criterion, where the structural components represent ampli- 
tudes of physical variables, and the measure is in energy terms. 

FOURIER SERIES 

The Fourier series constitutes an excellent introduction to representations that are not 
bounded, that is, those that do not have fixed origin or epoch and hence are invariant under a 
displacement of time, and which involve linearity.   Linearity requires that added causes 
produce added effects independent of the effects of previous causes.   The pnalysis must sup- 
port the properties of both invariance and linearity.  A linear analysis into trigonometric 
terms is an example. 

The simplest representation of a function by linearily-additive trigonometric terms is 
that provided by the theory of Fourier series.  A Fourier series may be used to represent an 
arbitrary function f(t) over a time interval T if f(t) is absolutely integrable over the inter- 
val, i.e., 

T 

J   |f(t)|dt    <   00 (A-l) 
0 

and, if the total rise plus the total fall of the function in the interval is finite.   Thi». permits 
applying a minimization (or maxima) criterion with respect to some characteristic o£ the 
original function in order to evaluate the completeness of the representation.  Alternate 
specifications which permit analysis by a Fourier series require the function f(t) to contain 
a finite amount of energy in the interval T (integrable square), i.e., 

9 
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jifa )1      dt   < (A-2) 

The value of the function at a point of discontinuity is assumed to be the average of the right 
and left limiting values (continuous in the mean), i.e., 

f(t)lt.t0 = T limit   f(tc + l«|)   +  limi!-   f(tQ- |e|) 
Le-O e-O 

(A-3) 

A clas^of functions that meets these restrictions can be expresstd in trigonometric form as 

f(t)   =  ^ +   L    k cos &■ nt  +  Bn  .in ^ nt]   . (A-4) 

This is known as th^b F0urier series where An and Bri are the Fourier coefficients 

«. = f J NUt)  cos TJT nt  dt ; 

T/2 

Brt = Y  I       f(t) sin"T nt dt 

-T/2 

It is possible to represent the Foumer series in terms of complex exponentials, 

f(t)   =   'X>    D^ 

where Dn are the complex Fourier coefficients and irv  their complex conjugates 

-j -=- nt 

(A-5) 

3Tnt 

Dn   =  Y   I f(t)e       T 

(A-6) 

(A-7) 

Positive and negative harmonics, or positive and negative frequencies« are i-onsidered equally; 
two conjugate complex coefficients are furnished for the frequency terih^g and their sum repre- 
sents the real coefficients given by (A--4), 

Completeness of the Fourier series representation may be considered by ss^xamining a 
finite number of terms ii; (A-6) and the error function eN 

T/2 

f f(t)-/_jDne 
-N 

dt 
S/A-8) 

Use of the error function establishes an integral-square error criterion and gives the inter- 
polation error in terms of energy. By expanding (A-a) a set of orthogonal coefficients Dn is 
determined which make eN a minimum. When this is done the Fourier coefficients given by 
(A-7) are obtained and thus the Fourier series is an orthogonal representation. The integral- 
square error criterion is an implicit property of the Fourier series. The error vanishes as 
the number of terms in the expansion becomes infinite. 

An important theorem in Fourier series analysis is ParsevaUs theorem.  This states that 
when Dn is given by (A-7), the error function (A-8) will tend to zero in the limit as N - oo and 

M" if(t)i2dt =2Z KI1 

* -00 
-T/2 

(A-9) 
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Hence, if the  f(t.) represents a physical process, such as a pressure-time function, the 
average energy asoociated with the function is equal to the sum of the average energy in its 
Fourier components. 

If the coefficients of a harmonic series expansion are chosen to be Fourier coefficients, 
then the integral-square error will have its smallest possible value.   From Parseval's 
theorem, a finits number of Fourier terms will be a better approximation of the original 
function with respect to energy content than a similar number of terms of any other orthogonal 
representation.  It Is this aspect which makes Fourier expansion such a useful tool, for it is 
this and only this expansion which shows how the energy is distributed in frequency.   Figure 
A-l illustrates how the sum of the first three terms of the Fourier Series expansion of a train 
of pulses approximates the function. 

f(t)  ={, 
A        0 < t < T/2 

■i T/2 < t < T 

(a) i > 

] 
A 

i 
-3T, 2                 -1 -T/2 T/2                  1 31/2                21 5T/2 

f(t) 
A    .   i*     .       .   ^   2A     .     „     ,    ,    2A     .     , 
X  + — s I n ait   +   —  s i n 3 c<J t   + -— sin  5 w t + 2 77 377 577 

(b) 

A        2A 7& 
+ — sinwt   + |=- sin 3wt 

Figure A-I  - Illustration of howthe sum of the first three terms of the Fourier series 
expansion of a train of pulses approximates the function 

LINE SPECTRA 

Two spectra can always be obtained from a Fourier analysis.  A complete and practical 
characterization of a function can be given by a graph with the harmonic number n as abscissa 
and the Fourier coefficients An and Bn as ordinates.   They are called the Fourier cosine-series 
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spectrum and the Fourier sine-series spectrum according to whether the An or ßn coefficients 
are plotted.   Since n is a discontinuous variable, each spectrum will consist of a set of dis- 
crete lines. 

I The line spectrum, using form (A-6), can also be used to characterize the amplitudes and 
phase angles of the harmonic expansion at the harmonic frequencies.   The amplitude and phase 
spectra are even and odd symmetrical functions of frequency, respectively. 

CONTINUOUS SPECTRUM 

The concept of a spectrum can be extended to include noncontinuous or transient functions. 
In the discussion of the Fourier series, reference to a periodic function was deliberately 
omitted since the series may also be used for the representation of functions within a given 
interval.  It is important to note that line spectra as representations are confined to periodic 
functions.  If the function is nonperiodic, the phase and amplitude spectra will be continuous. 

The transition from a line to a continuous spectrum is illustrated in Figure A-2 where the 
continuous spectrum of a pulse is obtained by letting the period of an infinite train of pulses, 
Figure A-2(a), become infinite.  Figure A-2(b) shows that when the period is doubled with the 
pulse height and width being unchanged, the zero frequency component (the average value of the 
wave) is halved and the spectrum will contain more harmonics but have the same envelope.   In 
Figure A-2(c), the period is again doubled and the results are similar to those in Figure 
A-1(b).  As the period is increased indefinitely, the continuous spectrum of an isolated pulse 
is finally obtained as shown in Figure A-1(d).  In the limit, the value of the zero frequency 
component and the spacing between the harmonic frequency components becomes zero    This 
continuous spectrum may be regarded as consisting of an Infinite number of "components." 
The magnitudes of the components are infinitesimal and cannot be measured by direct graphical 
methods.   Calculus techniques over finite time Intervals must be used. 

FOURIER RELATIONSHIP BETWEEN THE 
WAVEFORM AND SPECTRUM 

The continuous counterpart to the complex Fourier series representation of a waveform 
given by (A-6) is 

f(t) = ^ I   FCJ^e^do. (A-10) 

where F(JM)  is the amplitude-phase spectrum, u= 27rf is the radian frequency, a continuous 
variable.  Equation (A-10) Is valid provided the Integral exists, and indicates that the Fourier 
coefficients are a discrete form of the Fourier spectrum. 

The waveform f(t) and Its amplitude-phase spectrum Ffv) form a Fourier transform 
pair.   That is, when the waveform Is given by (A-10), the Fourier spectrum may be 
expressed as 

CD 

F(j^)    =     j    f(t)e''a't cit . (A-ll) 

The Fourier spectrum Is determined by the complete history of the waveform from t = -a> to 
t = +oo.  When it Is expressed In terms of frequency (, the complex notation on the left-hand 
side of (A-ll) is usually omitted, and Ffjoj) becomes F(f). 

A useful theorem in Fourier transform analysis Is   Plancherels'    theorem.  It states that 
If F(f) Is of Integrable square on the entire range, -oo < f < co, then there is a function f(t) 
which Is also of integrable square on the entire range, -m < t < a>.  The functions are related 
by the following: 
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WAVEFORM I     AMPLITUDE — PI — PHASE FREpUEMCY SPECTRUM 
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Figure   A.2 -  Transition of the Fourier line spectrum of a train of pulses 
to the continuous spectrum of an isolated pulse 
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CO CO 

f   |F(f)|2 df    =      I    |f(t)| dt: (A-12) 

Since   | ((t)] 2 is the instantaneous power, (A-12) represents the total energy of the waveform 
and   |F(f)i    is the energy spectrum.   Planchereis' theorem is the continuous analogue of 
Parseval's theorem and measures the completeness of the Fourier transformation by estab- 
lishing an energy equivalence between the waveform and its spectrum.   Similarly, it reduces 
the integral-square error to zero. 

Despite the limitations and difficulties associated with analytical and practical aspects of 
Fourier transforms, the benefits to be derived are considerable.   The most powerful aspects 
of Fourier transform theory may perhaps be attributed to extensibility, that is, the inherent 
ability to encompass a wide range of physical processes.   Fourier transform theory historically 
has set the stage for other transforms.  A characteristic of all transforms derivable from the 
Fourier transform is that they possess a Plancherel type theorem and consequen '.y, an integral- 
square error for evaluation purposes. 

Transforms and the procedures implied, "transformations," have always been fundamental 
tools.  One definition of "transform" is "to change in form, shape, nature, function, as an 
algebraic expression or geometrical figure, without altering the meaning or value."   Together, 
with this, should be added the definition of its synonym, "convert" which is, "a change of the 
details which are better suited for a particular use."   These definitions contain the essence of 
transform theory.   That is, a transform is a tool that provides a greater flexibility for the 
application of mathematical analysis to the reduction of a problem.   The type of transformation 
made is dependent on the type of problem and the application to which the results are to be 
applied.   Thus, transformations Involve physical and analytical "Instrumentation" which intend 
to match the source of the problem to Its destination. 

Transforms pertain to numbers or variables, as well as to functions of variables.  A 
familiar "number transform" is the logarithm, which allows multiplication and division to be 
performed by means of the simpler operations of addition and subtraction, respectively.  A 
function transform should be able to convert functions and operations in one domain into 
simpler (algebraic) functions of corresponding Intei-medlate variables.   Then, as in the case of 
the logarithm, the algebraic equation is more readily solved in the transformed domain.  The 
solution In the original domaln(s) could then be obtained by consulting the appropriate tables, 
thereby performing an inverse operation.  This, too, is another advantage in using the trans- 
form method, for It allows one to systemlze results obtained with It. 
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2.   STATISTICAL ANALYSIS 

INTRODUCTION 

The need for applying probabilistic or statistical methods may arise in a number of ways. 
As a result of the influence of many variables which may not be readily measured, a deter- 
ministic specification of the problem may prove impractical from both a physical and analytical 
point of view.   "Noise," in general, fits in this category, since it is not possible to predict on 
the basis of a measurement made at one region in space, at one instant of time, what the pre- 
cise value of a noise voltage or current will be at a future Urne or another spatial region.  How- 
ever, given certain bounds on the process, useful estimates of future values or of values in 
other spatial regions may be possible.  In other cases, the influences of the variables may be 
known or may be determinable, in principle.  However, the complexity of a deterministic 
description could be so great as to affect its utility, and statistical descriptions may conse- 
quently be favored because of their relative simplicity. 

Statistical descriptions are based upon assumption of a type of regularity.   For example, 
in order to establish a mathematical model of statistical events, we must as3ume that as the 
number of experiments giving rise to the events are repeated without limit, they will tend to 
some "smoothed" or regular behavior.   This process is termed statistical regularity and may 
give rise to a discrete or continuous random variable(s), though in most cases it is both. 

An associated step in determining a suitable description is to establish a quantitative 
measure of the variable.   This is done through the notion of a probability value.  A positive 
number is assigned to a particular event which behaves as the limit of the relative frequency 
of occurrence of that event with respect to the total number of events as the latter becomes 
infinite.  We can then speak, given a random process, of the probability of obtaining a particu- 
lar result from that process.   For a random process, the random variable varies not only with 
respect to its position in some "space" but also as a function of time. 

A set of functions possessing one or more characteristic properties, such as a collection 
of sine waves, is called an "ensemble" of functions if the set has a probability distribution 
given with it.   In fact, to affect a statistical analysis, our state of knowledge must be the prob- 
ability distribution function of the random variables.  We can then make statistical predictions 
of future values of a function of the ensemble.   The stochastic or random variables are also 
called the degrees-of-freedom of the ensemble and are the number of values needed to specify 
the function at any one instant of time. 
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DISCRETE  AND CONTINUOUS  PROBABILITY 
DENSITY FUNCTION 

A function of a random variable equal to the probability of obtaining the random variable 
as it goes through a whole range of values is called a probability distribution function. 
Although the probability distribution function offers a complete statistical description of a 
random process, in most problems it cannot be determined easily by direct means, and other 
descriptions are required.  One of these is the probability density function which is the 
derivative of the probability distribution function with respect to the random variables involved. 
In order to make this definition applicable to discrete random variables the concept of impulse 
functions is employed.   If all possible values of the random variables are considered as 
describing a "field," then the probability density function of any point in the "field" is proportional 
to the probability of finding the random variables in a differential region containing the point. 

If P(x < X) is the probability distribution function of a random variable x, where X is any 
value in the range of x, then the probability density function p(x) is given as: 

P(X)   = ^_p (A-13) 

such that 

P(x < X)    =     j      p(x)dx . (A-14) 

.'rn differential notation, (A-13) may be expressed as 

P(X-r1X <   x   < X)   =  p(X)HX. (A-15) 

The probability that a random variable x falls in the interval a < x < b is the difference 
between the values of the probability distribution function at the end points of the interval, i.e., 

P(a  < x < b)    =   P(x  < b)    -   P(x  < a) . (A-16) 

If x(t) is a random function, the probability of finding x(t) at a particular value, X, for a given 
time is zero.  Instead, the probability of finding x(t) within the interval X and x - ax, is defined. 
From (A-15), this probability may be expressed in terms of the probability density function P(X) 
and the differential interval HX as p(X)rix.   The probability of finding x(t) equal to any value 
between x = a and x = b would be the sum of the probabilities of finding it within any one of the 
strips that make up the interval (if the probabilities are mutually exclusive, that is, if they do 
not occur together).   For a continuous random function, this may be written as: 

b 

P(a < x < b)   =   j   p(x)dx . (A-17) 

Since it is certain that (x)  will be found somewhere, using (A-14), 

CO 

I     P(x)dx   =    1 . (A-18) 
-co 

The probability density function of a discrete random variable may be considered to be 
comprised of an impulse at each of its possible values having a strength equal to the corre- 
sponding probability. 

p(x)    =   2_,P(Xm^(X-Xm) (A"19) 
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is the probability density function for a discrete random variable which has M possible values 
xm with probabilities P(xm).   The function S(x - x^ is the impulse function centered upon x = x^ 

AVERAGES 

The usefulness of a probability density function is that from it may be derived averages 
which are better adapted for analysis and measurement.   These include the mean value, the 
mean-square value, and averages of higher positive powers of random functions. 

The concept of a statistical average involves the limit of the arithmetical average of a 
random variable.   If x is a discrete random variable taking on any one of M possible mutually 
exclusive values xni, the statistical average E[g(x)]   of a single-valued function of x, g(x)J 

which would also be a discrete random variable is defined by the equation 

K[g(x)]    =   J2  gCxJPCsJ (A-20) 

where PCx,,,) is the probability of occurrence of value xm. 

If x is a continuous random variable with probability density function p(x),the statis- 
tical average of the continuous random variable g(x) is defined as 

E[g(x)]   =    J   g(x)p(x>dx . (A-21) 

Equation (A-21) may be extended to the case where x is a mixed discrete and continuous ran- 
dom variable by allowing p(x) to contain impulse functions.  It is important to note that the 
statistical average of a function of a given random process may be a function of time. 

The statistical average of the nth power of random variable x is called the nth moment, rrn , 
of its probability density function and is given as 

= t [x"] I    x^   p(x)rlx. (A-22) 

For n = 1 and n = 2, the corresponding moments are equal to the mean value and mean-square 
value, respectively.  In electrical terminology, mj represents the dc component of the process 
and m2 gives the mean power dissipated in a ono-ohm resistor.  It is often found convenient to 
deal with the ac or systematic components only.   The averages are then called central moments, 
Mn, and are defined by 

CD 

Mn  = E   [(x  -  »j)"]   =   J    (x-mi)n p(x)dx . (A-23) 
_ CD 

An important central moment is ^2, which is   defined as the variance of the density func- 
tion.   From definition (A-23) the variance may be put in the form 

M2   = E[x2]    -   (E[x])2. (A-24) 

The square root of the variance is defined as the standard deviation a, i.e., 

<7  =   M172- (A-25) 

In electrical terminology, the standard deviation is the rms value of the ac component.   The 
variance is the mean-square value and when multiplied by the conductance or resistance. 
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whichever is appropriate, it gives the mean power represented by the ac component.   It is the 
average ac power dissipated in one-ohm resistor. 

The density function is completely determined when moments of all orders exist.   Knowl- 
edge of the moments is equivalent to a knowledge of the probability density function in the 
sense that it is possible theoretically to exhibit all properties of the probability density function 
in terms of moments. 

An average that is very important in physical problems is the mean value of the function 
exp(jvx), x being a random variable.  This is called the characteristic function Cx(jv), and 
using (A-21), is expressed as 

00 

Cx(jv)   =E[eivx]   =    J   e
jvxp(x)dx. (A-26) 

- CD 

By comparing (A-26) with the Fourier relationship between a waveform and its spectrum, the 
characteristic function is the Fourier transform of the probability density function.   P(X) may 
be obtained by taking the inverse Fourier transform of Cx( jv), 

POO   ^Jwe-^dv. (A-27) 
-CO 

Since they are Fourier conjugates, both descriptions can provide equivalent information.   The 
use of one or the other is dependent on the problem.  One of the primary attributes of this 
relationship is that it may facilitate computation of the probability density function by trans- 
forming an n-fold integration in the "density function domain" to 'n n-fold multiplication and 
one integration when the operations are performed in the "characteristic function' domain. 

The averages discussed earlier were derived from the probability density function.   It is 
also possible to determine the moments through use of the characteristic function.   The mom- 
ents are calculated employing auxiliary parameters called semi-invariants or cumulants which 
are derived from ä power series expansion of the natural logarithm of the characteristic func- 
tion.   The first semi-invariant is the mean value and the second is the variance. 

Averages may be obtained or defined either as operations in time or over sets of functions 
at an instant of time.   The time average of the function x(t) which is a member of the random 
process   [x(t)]   is defined as 

<jc(t)>   =    limit Y    )       x(t)dt (A-28) 

where T is the interval over which the average is taken.  It is independent of time and gives 
the dc component while eliminating both the nonsystematic and systematic components of the 
function.   The statistical average, unlike the time average, is usually a time function which 
eliminates the nonsystematic components completely while retaining the systematic components, 

The mean-square value is the average value of the square of the function and may be an 
average over time or an average over the sample functions at a particular instant.  The main 
diiierenee between them is that the first is a number and the second a function of time.  It 
should be recognized that a mean-square value is a measure of the quantity of a function but 
tells nothing of its behavior except how its mean-square value varies with time.   Thus, a 
variety of functions may have the same mean-square value. 

STATIONARITY AND ERGODICITY 

A random process may be considered as consisting of an ensemble of functions that can be 
characterized by a complete set of probability density functions.  If none of the probability 



19 

densities which describe the random process changes with time such that the statistics meas- 
ured at any two distinct instants of time are the same, the process is said to be stationary "in 
the strict sense."  If the mean value is a constant function of time and the statistical average 
of the product of the random function at two installs of time does not depend on absolute time 
but only on the time difference, then the process is said to be stationary "in the wide sense " 
A random process which is stationary in the strict sense is also stationary in the wide sense. 

If each member of a stationary ensemble of random functions that make up some random 
process is typical of the ensemble as a whole, then the random process is said to be ergodic 
The statistics over a long time interval for any one random function are then the same as the 
statists over the ensemble of random functions at any one instant. An ergodic process is 
always stationary but a stationary process can be nonergodic.  Analysis can often be simplified 
by assuming that a process is ergodic.  However, it is not ordinarily possible to demonstrate 
or to prove that the physical process is ergodic, other than by comparing the results of meas- 
urements with predictions derived from the analysis. 

TWO-DIMENSIONAL PROBABILITY THEORY 

The probability density function of a single variable allows determining the relative 
occurrence ol different magnitudes but not of the time interval involved in observing such a 
set of values.   The knowledge of the statistics of a pair of values separated by specified 
instants of time is of special importance.  It is necessary to determine the probability rela- 
tions concerning two coordinates x and y which may be dependent on each other - that is 
specifying the value of one affects the statistics of the other.  Such distributions are called 
bivariate, or joint probability distributions. 

Similar to single-variable probability theory, the probability density function of two 
coordinates, p{x>y) may be defined as the function which when multiplied by the infinitesimal 
area dxdy gives the probability that the value of the first coordinate is in the range x to x + dx 
and the value of the second coordinate is simultaneously within the range y to  y + dy.  The 
probability that x lies between xj and x2 while y lies between yi and y2 is expressed as 

Prob   [xj  < x  < x2,   yj  < y  < y2]   =      j     J   p(x,y)dxdy. (A-29) 
»i yi 

The conditional probability density function expresses the state of knowledge of one vari- 
able knowing the probability of occurrence of another variable, and has essentially the same 
properties as the density function previously discussed.  If p(x,y) is the joint probability 
density function of the variables x and y, and p(x) and p(y) represent their individual den- 
sities, then the conditional probability density function p(xiy) is 

p(xly)   =  £^2 (A-30) 
p(y) 

where the independent variable is y.  If x is the independent variable, 

p(ylx)  = ^—^ ■ (A-31) P(x) ' 

Conditional densities are bounded by zero and one and are at least equal to the corresponding 
joint densities, 

P(xly) > P(x,y) . (A-32) 

Averages may be computed as previous)y, except that there are now two integrations to 
perform. 
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E[f(x,y)]     =    J    J   f(x,y)p(x,y)dxdy (A"33) 

.CD      - CO 

where f(x,y)  is the two-dimensional function under consideration.  In particular, the central 
moments ^j k are expressed as 

Mjk  =  KlVng'  (y-«y)k] (A-34) 

I    j    (^-"x)'   (y-my)kp(x,y)dxdy 
(A-35) 

where m   and m    are the mean values of the random variables x and y, respectively.   The 
most important central moment is the quantity Mll.   This is referred to as the covariance of x 
and y and is expressed as: 

Mn   =   E[(x.-mx)(y-my)] (A-36) 

=   E[xy]   - E[x]E[y]. (A-37) 

The covariance is a measure of the linear dependence between two quantities.   Zero covariance 
implies linear independence but not necessarily statistical independence.   Statistical independ- 
ence must be determined from central moments of higher order. 

Analogous descriptions may be obtained for problems of higher dimensionality.  Added 
dimensions result in increased complexity in their representations, not only because more 
variables are involved, but because of added bounds and possible dependencies among the 
variables.  Although Fourier transform theory is applicable in multidimensional problems, it 
is often necessary to use other methods such as conformal mapping. 

STATISTICAL INDEPENDENCE 

Previously it had been indicated that covariance is a measure of the linear dependence 
between two random variables.  When the first joint moment E(xy) of random variables x and 
y factors into the product of their means, 

E(xy)    =   E(x) E(y) (A-38) 

then x and y are linearly independent.   Two random variables which are statistically independ- 
ent are also linearly independent.  However, linear independence does not imply that the vari- 
ables are statistically independert, unless they are jointly Gaussian.  A necessary and sufficient 
condition for the statistical independence of two random variables is that their joint moment 
factors 

E(x"yM    =   E(xn)E(yk) (A-39) 

for all positive integral values of n and k.  Statistical independence may also be expressed 
through the characteristic function, i.e., the joint characteristic function of two random 
variables will factor into the product of their respective characteristic functions 

Mx,y(ivi.iv2)   = Mx(ivi) My(jv2). (A-40) 

Equations (A-39) and (A-40) are equivalent measures. 

The concept of statistical independence is of considerable importance, particularly in 
multidimensional problems, since it indicates the absence of interactions among the variables 
and permits simpler descriptions of processes.  The key to effective analysis of multidimen- 
sional problems involves determining the effect various operations have on statistical inde- 
pendence.  Analytically, if independence exists, then the n-dimensional joint characteristic 
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function for n random variables is equal to the n-fold product of their individual character- 
istic functions.  An important theorem in statistics is the central limit theorem.   This states 
that the probability distribution of the sum of an indefinitely large number of independent 
quantities will approach the Gaussian distribution, regardless of the individual distributions. 
The significance of the Gaussian distributions is reflected in it being completely determined by 
having a knowledge of its second moment and in not having to examine moments higher than the 
first to determine independence.  However, it is necessary to establish that transformations 
performed preserve the Gaussian properties. 

A measure of the similarity in phase between functions is termed coherence.  When two 
functions A(t) and B(t) are superimposed, the resultant average power in the time interval 
T, is 

p.v  = y j[A(t) + B(t)]2dt (A-41) 

T T T 

1 jA2(t)dt +4 jB2(t)dt +| J A(t)B(t)dt. (A-42> 

The first two integrals on the right of the above equation represent the average power of the 
functions taken separately, while the third integral represents an interaction of the two func- 
tions that is dependent on their relative phase.  If the third integral is zero, the functions are 
said to be orthogonal.  If the integral is equal to (2/T) times 

T 

J |A(0||B(t)|dV . 
0 

the functions are completely coherent.  All incoherent functions are orthogonal, but not all 
orthogonal functions are necessarily incoherent. 

It can generally be stated that the resultant average power in the superposition of a number 
of functions is equal to the sum of the average powers of the individual functions plus twice the 
sum of the average values of the products of the incoherent components, each product taken 
with the proper sign. 
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3.   CORRELATION AND SPECTRAL ANALYSIS 

INTRODUCTION 

for Li ensemble of functions at particular instants of time. 

An analysis which depends on the state of ^V*^™^ 'ZfTollZ 
arbitrary Instants of time is called a co"r

e^ are derivable 
through time or statistical averaging.  C^ff^^^^^complete descriptions, except 
from a deterministic or ^^jf^ f^Ä^q^Xtlve measure of trading 

SSÄ ^Z^^^tX^^S it & yieM iaentical results 

whether determined temporally or statistically. 

AUTOCORRELATION FUNCTION 

TMs^ of description is called an autocorrelation function, 

in the case of a statistical ^eBe^f se^ 

^(tx.tj)  =  *[*{ti) x( 

CD     a 

.x2p(x1,x2) dXidxj 
(A-43) 

where x, and x2 refer to the values of ^^LmSVÄä (A-Äe^ctr- 

5Än^noTSSrÄ8paS^^/^^^^^^^ - onV onlhe time difference 

T  =    t, 

In the case of temporal representation, the autocorrelation function of a member of a 
random process is defined as 
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•Kr) limit 
T-CD 

2T  /   X (t)   x(t   +  T)   dt. (A-44) 

In general, (A-43) and )A-44) will not yield identical results.   However, if the random 
process  is ergodic, the ensemble statistics and time statistics coincide, and the autocorrela- 
tion functions obtained are equivalent.   In fact, this can be used as a definition of ergodicity. 

It may be seen from (A-44) that the autocorrelation function for T = 0 is the mean-square 
value of x(t), while its value for a random process for T -. oo is the square of the mean value. 
Mr) is usually a damped function of r and while it does not define a process uniquely (unless 
it is Gaussian), it can provide an indication of its "time-constant."  The autocorrelation func- 
tion also has the properties 

These features of the autocorrelation function are illustrated in Figure A-3. 

(A-45) 

Mr) 

DC POWER 

Figure A-3 - General autocorrelation function 

The definition (A-44) may be applied to an arbitrary function of time as well as to a 
sample function of a random process so long as the indicated limit exists.  If the function x(t) 
is periodic and can be represented by a Fourier series, i.e.. 

then the autocorrelation function using (A-44) is found to be 

CO 

i/<T)    =   D*  +  2 ^   |Dn|2 cos naoT 

(A-6) 

(A-46) 
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The autocorrelation function of a periodic function is comprised of its dc value squared plus 
all of its harmonics.  Notice should also be taken of the absence of all phase angles.  All 
periodic time functions which have the same Fourier coefficient magnitudes and periodicities 
also have the same autocorrelation function even though the phases of their Fourier compo- 
nents (and hence their actual time structures) may be different.  This indicates that there is a 
"many-to-one" correspondence between time functions and autocorrelation functions. 

The autocorrelation functions discussed previously have been associated with waveforms 
having infinite total energy content, that is, continuous periodic or random functions.  Study of 
such waveforms, unbounded in either time or frequency serves primarily to facilitate under- 
standing of the mathematical analyses available.   Functions that contain a finite amount of 
energy, that is, energy-bounded functions, are of greater practical significance.  Their auto- 
correlation functions are actually simpler because there is no difficulty with limits. 

=        x(*ivct + n-\ At (A-47) Mr)   = x(t) x(t + T) rit. 

POWER SPECTRUM 

If T; watts is the average amount of power dissipated in a one-ohm resistance and if the 
portion of v arising from the components having frequencies between f and f + df is denoted 
by W(f)df, then 

=   J W(f)df <x2(t)> (A-48) 

and W(f) is called the power spectrum of x(t).   *(f) is the spectrum of the average power and 
has the dimensions of energy. 

If x(t) is a periodic function of period T having a finite amount of energy per period, 
using Parseval's theorem, the power spectrum consists of a series of impulses at the compo- 
nent frequencies of x( t), each impulse having a strength equal to the power in that component. 
Thus, the power spectrum is a measure of the distribution of the power in x(t) as a function 
of frequency, and for a periodic function is given by 

OD 

W(f)   =   £ jDn|
2S(f-.„f0)        f0 = i (A-49) 

where Dn is the complex Fourier coefficient given by (A-7).  The total power in x(t) is 

00 a T 

Jw(f)d£   =    2]    |Dn|2 = f J|x2(t)ldt- <A-50) 

When dealing with a random process comprised of an ensemble of functions the power 
spectrum W(f) may be characterized by statistical variation from member to member. While 
it may be completely determinate for any one member of the ensemble, it cannot be plotted in 
the limit T - m, since adjacent values W(f) and W(f +df) will be uncorrelated. It is necessary 
to reduce these random variations and "smooth" the spectrum from one frequency to another. 
The resulting description is a "mean-power spectrum." In order to affect a Fourier analysis 
of a continuous random function x(t) which would have infinite energy content, it is necessary 
to define an auxiliary function xT( t) as 

x-jO)    =   x(t) when    0   < t  < T 

=   0 elsewhere. (A-al) 
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The function x^t) may now be subjected to Fourier analysis, and as T -. co, those properties 
of x^t) which approach limiting values will also be properties of x(t). The Fourier trans- 
form of x^t) is given as 

T 

X-Kf)    =    Jx^e-^'dt   =    JxCOe-^'dt. (A"»«) 
o 

Ths mean-power spectrum of x(t) i? defined as 

ITT-,        H   -.   2lx^O|2 (A-53) W(f)   =    limit  =  
T^oo T 

where we consider only values of f > o and assume that this limit exists.   W(f), as defined, is 
a measure of the frequency distribution of the power in the function x(t) which extends from 
t = -cs to t = 4-01.  However, this definition is useful only when x(t) has no dc component or 
periodic terms.  Whenever a random function can be considered as a superposition of dis- 
turbances x(t) delayed by varying times so as to form a sequence which is "random in time" 
with a mean rate K, then the mean-power spectrum becomes 

W(T)   =   A2!XT(f)|
2 ftO. (A-54) 

The behavior of W(f) at f = 0 is like an impulse function, for it approaches infinity in such a 
way as to enclose a finite area. 

The information contained in (A-53) or (A-54) as well as in the power spectrum previously 
defined is less than that in an amplitude-phase spectrum since the phase information has been 
removed.  Any systematic variations are also smoothed out in the derivation of a mean-power 
spectrum.  This is the main advantage of working with the power spectrum.  That is, by 
supressing information about the phase, results are obtained independent of the origin of the 
time scale. A random function can be represented by its mean-square value, the autocorrela- 
tion function or mean-power spectra.  Whether these representations arc "adequate" will 
depend on the particular application.   In many instances they are used because other repre- 
sentations may not be available or would be too complex.   For some, however, they may be 
entirely adequate.   Figure A-4 shows the autocorrelation function and power spectrum for 
various noise fluctuations having equal noise power. 

fA fundamental theorem in correlation and spectral analysis is the Wiener-Khintchine 
Theorem which states that if an arbitrary function is amenable to Fourier analysis, then its 
autocorrelation function and power spectrum are cosine Fourier transforms of each other.  It 
is this which makes the autocorrelation function such a useful description, that from it we can 

t determine the power spectrum which is often of real interest.  The relationship may be writ- 
ten as 

- 
f 

■^(r)   =   J W(f) cos jTrfrdf (A-55) 

W(f) J  l/<T)   COS   2wfT dr . (A-56) 

Clearly, if the function is random, we would consider the mean-power spectrum.  It should be 
noted that the Fourier transformations (A-55) and (A-56) are expressed in terms of cosines 
instead of exponentials because both W(f) and ^(T) are real and even functions. 

CROSSCORRELATION FUNCTION 

A very important type of correlation is that between two arbitrary functions.  This is 
called the crosscorrela: ion function and may be obtained by performing a time or statistical 
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Figure A-4 - Autocorrelation function and mean-power spectra 
of functions having equal noise power 
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average of the product of the value of one function at some instant of time with the value of the 
other function at another instant of time. 

For stationary random functions x(t) and y(t) having the joint probability density function 
p(x, y), the crosscorrelation function iA     at the instants t1 and t2 is given by 

xy(T = t2-t1)    =   E ["(tlM^)]     =    /    |   x1y2p(Xl,y2jdx1dy2. (A-57) ■A 

If we average temporally,  0     is defined as 

'/'xyCT)    =   limit ~    f x(t)y(t  +  T)rtt. 
T -* nn •'_ 

(A-58) 
T-oo 

For ergodic functions, both definitions yield identical results. 

If the two functions are periodic having the same fundamental frequency, crosscorrelation 
retains the fundamental and only those harmonics which are present in both, together with their 
phase differences.  All periodic time functions which have the same Fourier coefficient mag- 
nitudes and periodicities with fixed relative phase between the functions will have the same 
crosscorrelation functions.   Thus, similar to the case for autocorrelation, the correspondence 
between time functions and crosscorrelation functions is a "many-to-one" correspondence. 
Figure A-5 illustrates the cros. ^irelation function of two periodic functions. 

When the two functions are incoherent, such as two stationary random functions which are 
independently generated, crosscorrelation produces a constant, independent of T, which is a 
product of the individual mean values of the functions.  Although the autocorrelation and cross- 
correlation functions are somewhat similar, the crosscorrelation function retains relative 
phase information, and hence it is necessary to specify whether x(t) ci- y(t) is taken at the 
displaced time t + r.  In general, 

a 

0yx(T)   =   limit ^  J   y(t)x(t +r)dt (A-59) 

need not be the same as  ^xy(r).  The crosscorrelation function is an even function and has the 
property 

<PXy(r)  =  ^(-T) . (A-60) 

Additionally, 

^„(r)]    < v/^xx(0)^yy(0) (A-61) 

where '/'.„(T) and ,/'yy(T) are the autocorrelation functions of x(t) and y(t), respectively. 

CROSS-POWER SPECTRA 

If xjCt) and x2(t) are both zero outside the interval 0 < t <T, then the cross-power spectra 
w12(f) is defined as 

XiC-f) X,(f) , ,.   „.. 
w12(f)  =   limit    lV    '    at      =  w'21(f) (A-62) 

T -»oo 
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Figure A-5 -  Plot of crosscorrelation function   012(T) of the periodic functions Xj(t)   and x2(t) 

where 

f -iut   . Xl(0    =    J    xl(t)e dt 
o 

X2(f)    =    J   x2(t)e dt 
o 

(A-63) 

The cross-power spectra are seen to be conjugate complex numbers.   The real parts 
are even functions of frequency while the Imaginary parts are odd functions of frequency. 
Therefore, W12(f) maybe written as 
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where U12(f) and v12(f) are real and 

Vl2(-l)  = U12(f)   = u21(f) (A-65) 

V12(-f)   =   -V12(f) = V21(f) . (A-66) 

If x (t) and x,(t) are incoherent, then W12(f) ^ 0 for all frequencies, although the con- 
verse is not necessarily true.  If W12m does not vanish at some frequency f, the functions 
are partially coherent.   For  |W12(f)P = »'1(f)W2(f)  the coherence is total in the second order 
sense for nc   -Gaussian sources and totally coherent for jointly Gaussian pairs. It in addition to 
this condition, W12(f) equals the real quantity Ula(f) at all frequencies  then the sources are 
said to be colinear.  Then, for a positive u12(f) , the phase will be additive and for a negative 
U12(f) they will subtract. 

If there is total coherence and W12(f) equals the imaginary quantity jV12(0 at all fre- 
quencies, the sources are said to be in quadrature, indicating that a 90° phase shift exists 
between components at the same frequencies.  A positive value of V12(f> indicates that the 
x.(t) component lags the corresponding x2(t) component by 90°, while a negative V12(f) 
indicates a corresponding leading phase angle.   Thus, cross-power spectra provide measures 
of coherence between two arbitrary functions and is shown in Figure A-6 for specific periodic 

functions. 

(•) 
x^t) =  A  »in ^„t 

x2(t) =  B cos ü>0i 

* t 

(b) 

«„(f) 

27? 

Area = -JT--. 

2-n 

Figure A-6 -  Plot of cross-power spectra W12(f)   of the 
periodic   functions  Xj(t)  andx2(t) 
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The Fourier transform of the crosscorrelation function is the cross-power spectrum. The 
Fourier transform pair is given by 

CD 

W12(f)    =    4  J  ^12(T)   COS  27T{T <iT 

0 

CO 

^12(T)     =      |wi2(f)    COS   27TfT   df   . 

(A-67) 

(A-68) 

Both functions may be used to describe the degree of coherence between two arbitrary time 
functions, and either function may be determined from its conjugate mate by performing a 
Fourier inversion. 

MEAN-SPECTRAL CORRELATION FUNCTION 

Completely random processes have random amplitude and phase spectra.  If the amplitudes 
are uncorrelated then the power spectrum is discontinuous at all points and the Fourier sine- 
cosine series have real coefficients which are statistically independent    However, since W(f) 
does not depend on phase, the power spectrum ana the autocorrelation function provide a meas- 
ure of the correlation between amplitudes. 

The mean-spectral correlation function W) provides a description of noise present in an 
unvarying amount and noise which is switched repeatedly or "modulated" in some arbitrary 
manner.  This is defined for a given function x(t) as 

r(f)  - | j x(^) xV-f)d</> (A-69) 

where B is the bandwidth of the spectrum X(*) and the asterisk denotes the complex conjugate, 
and the bar indicates a statistical average. 

As indicated previously, the phases of Fourier components of completely random Processes 
are random and uncorrelated.  If correlation is present, then this is aa rndica ion of somethtag 
systematic in the process and the mean-spectral function will have a finite value.   There are 
other™ ays in which phase correlation may be described, such as through higher moments of the 
probability distribution of the procoss. 

The Fourier transform of the mean-spectral correlation function y(f) is 

3{^ö}  = i^(Ö (A-70) 

which is the mean-square value of the waveform per unit bandwidth.  Hence, the mean-spectral 
correlation function distinguishes a time variation in average power which results in a correla- 
tion of the amplitude-phase spectrum. 

JOINT AUTOCORRELATION FUNCTION 

A time-frequency representation attempts a simultaneous description of both the time and 
frequency behavior.  Certain aspects of the interrelationships between the conjugate domams 
can be quantitatively described by the joint time and frequency autocorrelation function.  In 
o^er t^musSe the significance of a «joint correlation- description, consider the complex 
signal f(t) = s(t)ei«t) having the Fourier transform F(f),  s(t) and /3(t) representing the 
variation of amplitude and phase with time, respectively. 
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If the signal is displaced in time only, the temporal autocorrelation function ^r) is obtained 
as follows: 

f(t) = s(t)ei«t) (A_71) 

hence, 

f(t   +   T)   =   s(t  +  T)eJ^fttT) (A-72) 

0(T) is defined by (A-47) as 

vfr(T)  =   J f(t)f,(t+T)dt (A-47.a) 
-CO 

(the "delayed" complex conjugate has been introduced to account for the signal being complex ) 
Substituting (A-71) and (A-72) into (A-47.a), 

f sf*\ „,. . _s..-il>(t+'-)--3(t)] Hr)=   J   S(t)s(t+r)e-,w"T'-',l^Jdt. (A-73) 

If /3( t) is a linear function of time, say at, (A-73) reduces to the correlation function for the 
amplitude variation s(t) multiplied by e-i^, thus adding a linear phase e = -ar to the descrip- 
tion.   This is written as 

i'(r) = e-aT J   s(t)  s(t   + T)  dt. (A-74) 

If the signal is displaced in frequency only, it may be described by the phase correlation 
function, G(0), defined as 

j F*(f)F(< G(*)   =        F(f)F(f + *)df (A-75) 

where 4> denotes the shift in frequency.   The phase correlation function of a random process may 
be averaged over the ensemble of functions, with a resulting statistical average phase correla- 
tion function that is proportional to the mean-spectral correlation function of the process. 

If the signal is displaced both      time and frequency, f(t) becomes 

f(t  + r,4>)  -   s(t  +   r)eJ['s(t+T)   +  2T*(t + T)] (A-76) 

The complete temporal autocorrelation function ^(r,4>) is then 

4>(T,<t>)   =   j   f(t)f,(t+r,*)dt (A-77) 
-00 

Performing the substitutions indicated in (A-77), 

=    J  S(t)s(t+r)ei^t)e-^(t+T)e-i2''*(t+T)dt. (A-79) 
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Let t + T = x and dt = dx,   (A-79) then becomes, 

,,      ^ f     / v    ,    s     J-8(x-T)    -jß(x)     -jlwtx (A-80) 
4I(T,4>)   =     I   s(x-T)s(x)e e e dx v ' 

J  f(x) t*. 
i2w*xdx. (A-81) (x + r) e dx 

Equation (A-81) indicates that the correlation functipn of a complex signal which undergoes a com- 
bined time and frequency shift, denoted by r and 4> respectively, may be expressed in terms of 
waveforms of time and time displacement only, and an exponentially periodic term representing 
the shift in frequency.   The joint autocorrelation function ^(r,<t>) is defined by 

MT.4>)   =    |f(t)f(t+r)e-j2,'*tdt (A-82) 

=    jF'(f)F(f+0)e-i2'rfrdf . (A-83) 
-CD 

A characteristic of the joint-autocorrelation function is that the volume under the surface 
described by its envelope,   \\p(T,<t>)\2 , is a constant, i.e., 

00 00 

I    f   |0(T,0)|2dTd^ =   C. (A-84) 

The constant c is invariant for all waveforms and has been designated as an "absolute struc- 
tural constant."  For a waveform f(t) that is normalized such that 

J   |f(t)|2dt   -   1 (A-85> 
-to 

then c, the structural constant, is unity. 

Similar relationships can be derived for two functions. For two complex waveforms f ^t) 
and f2(t) having Fourier transforms F^f) and F^t f), respectively, the joint crosscorrelation 
function <p12(T,<t:) is 

■/-laC.*)   =   J f,(1)52(1+T)e'j2',*tdt (A-86) 
-00 

=    |F;(f)F1(f+0)e-i2'rfTdf. (A-87) 

With the energy in the waveforms normalized to unity, 

J  |f1(t)|
2dt   =   j   lf2(t)l2dt   =   1 (A-88) 

,00 -00 

the volume imder the cross envelope  1V//12(T,0)|
2
 becomes 
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Jl \*P12(r,4,)\   dTd4> 
2Ard4>   =   1. (A-89) 

The joint envelopes of Gaussian pulses are illustrated in Figure A-7. It is seen that if 
there is no modulation, the major spread will occur along the r-axis or c^-axis, depending on 
the length of the pulse.  However, for linear frequency modulation, the major spread will occur 
at some angle between the major axis of \*j>\ 2 and the r-axis, depending on the complex fre- 
quency.  A characteristic of linear frequency modulation is that the joint correlation function 
Wr,<t>) is not separable, i.e., 

W.r,<t>)   ^WT)G{<P). (A-90) 

The modulation has introduced a correlation cr dependency between the two domains and it 
appears possible to obtain a 'vide   | f(t) | 2 and a wide lF( f) | 2  as shown.  However, the phase 
dependency is not shown by   |F(f)| 2.  Consequently, this is not a contradiction of the indeter- 
minate relationship which exists between time duration and bandwidth.  Modulation consists in 
a sense,of a set of sequential operations, and the indeterminencyhas merelybeen redistributed. 
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Figure A-7 - Joint correlation envelope for various Gaussian pulses 



B.   EFFECTS OF BOUNDS ON FUNCTIONS 

1.   INTRODUCTION 

Thus far, we have discussed representing the structural properties of various functions 
without imposing restrictions upon them.   However, restriction, are inherent characteristics 
of all real signals and a meaningful analysis is one which accc    cs for their effect on observed 
results.  The fundamental restrictions are those imposed by finite bandwidth and finite time 
duration, either separately or together. 

The imposition of a bound on a continuous function implies transforming it into a set of 
discrete data comprising a finite or an infinite number of coefficients.   This is called sam- 
pling.   For a one-to-one transformation to exist where each function will correspond to one 
and only one sequence of coefficients, the functions under consideration must be properly 
restricted.  It is these restrictions that permit a function to be determined in any domain when 
only a related set of discrete data is known.  A continuous interpolate may be constructed from 
the discrete data to give a satisfactory replica of the original function.  The interpolation tech- 
nique selected will depend on the ^rcserties of the actual function to be distinguished, and in 
turn on the criteria used, such as minimizing the mean-square error or minimizing the 
maximum error. 

The primary purpose here is to show the basic similarities and differences of useful 
representations when the functions are bounded in time, frequency, or jointly.  Unbounded 
functions contain a finite amount of power whereas bounded functions are "energy bounded." 
The selection of a particular description will depend not only on the specific application but 
also on the types of bounds imposed.  Improved visualization, or easier computation and more 
economical instrumental realization can result from the proper selection of a description. 

2.    TIME  LIMITS 

UNIFORM SAMPLING 

A function f(t) which is continuous in a finite time interval and zero elsewhere can be 
represented by discrete values in terms of its spectrum. Owing to its importance in infor- 
mation processing, this relationship will be derived following the presentation employed by 
Woodward (Ref. B-2.1).   The following steps are taken: 

1. representing a function In a particular interval by a periodic function having the length 
of the interval as its period, 

2. representing the Fourier spectrum of the original function by the frequency composi- 
tion of the periodic function, ar.d finally, 

3. introducing an auxiliary function and developing a sampling theorem and associated 
composing function in the frequency domain. 

Let fp(t) be a periodic function having a period equal to f(t) in the interval -T/2<t <T/2. 
Then 
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where 

°n    =   T    l\(t)*" ^ (A-7) 

-T/2 

Due to the above restriction f(t) is completely determined by f (t) and consequently its 
Fourier spectrum F( j^) is. given by the frequency composition of the periodic function: 

Since the Fourier spectrum F( jw) of f(t) is formulated as 

FO«)    =    j    f(t)e-,4,tdt (A-H) 
.00 

T/2 
f -J"*   . 

=     J     fp(t)e dt 
-T/a 

by comparing it with (A-7) it is evident that Dn may be caressed in terms of F( j«): 

Dn   =  i F( jo.) 

(B-2) 

2-nn 
u*nai    a - 

(B-3) 

This shows that the spectrum of f(t) is proportional to the coefficients Dn in the Fourier 
series representation of f (t) for values   f = n/T.  The spectrum of fp(t) is a line spectrum: 

v-) -1** - ±L*{^) - ±L™<"-^)- (B-5) 

From (B-l) and B-5) it is seen that the spectrum of f(t) may be expressed as a series of 
impulses at values of frequency equal to n/T whose strength is that of the spectrum evaluated 
at the corresponding frequency divided by T, where T is the duration of the waveform,  f(t). 

By introducing another auxiliary function, f(t) maybe represented by fp(t) for all values 
of time, that is, 

f(t)   =   fp(t)g(t) (B"6) 

where f (t) is now given by 

Shrn 

f  , tv'it'i''-?)-'^" (B',, 

and g(t) is defined as 

fl     for     |tI   i T/2 (B_8) 

10    elsewhere 



37 

whose spectrum G(ja)) is 

. sin (a.T/2) /B_9) 

From Fourier theory, the spectrum of a product of two time functions is the convolution of the 
two separate spectra.  Thus 

Substituting (B-5) and (B-9) into (B-10) 

FCJo.)    =    j Fp(jß)G(j<o. jß)dß. (B-10) 

F(ja.)    =   Y L.r(3ß)S[ß -^j—l -dß 2nn\*™("-ßll (B-ll) 

which results in 

F(j^) 2'(^)^f- 
This is the sampling theorem in the frequency domain and expresses a continuous spectrum in 
terms of an equivalent line spectrum. 

In general, if a time-limited signal is zero everywhere in the range Tj < t < T2, then its 
Fourier spectrum may be completely determined by giving its values at an infinite set of 
sample points spaced 1/{T2 - Tj) cps apart in frequency.  Sampling the spectrum of a time- 
limited waveform at this rate is equivalent to expressing it in terms of the coefficients of a 
Fourier series expansion of the waveform.  The spacing between sample values controls the 
largest value of the conjugate variable (time), while the number of samples determines the 
order of the highest harmonic term in the Fourier series expansion. 

INSTANTANEOUS POWER SPECTRUM 

If a stationary random function is suddenly applied to a network and it is required to 
determine its power spectrum at some time T after it started, then if T is not sufficiently 
large the spectrum measured will not be identical with the power spectrum represented in 
section A.3.  Instead, it will change with time until it is no longer dependent upon the starting 
time of the process.   This behavior may be represented through the concept of the instanta- 
neous power spectrum, as defined by Page (Ref. B-2.4). 

Denote the energy density in the time-frequency plane by W(t, f).  Then the total energy 
expended up to a time T will be given by 

1       OD 

J   J   W(t1f)df dt . (B-13) 

The instantaneous power is defined as the rate of increase of the total energy and is thus 
expressed by differentiating (B-13), 

instantaneous power =   J  W(T,f)df . (B-14) 
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Cc 
instant T 

f t(x) such that: 

Comparing (B-14) with (A-48), W(T. f)  is defined as the instantaneous power spectrum at any 
instant T. 

If a signal f(t) is switched off at time  t = T, in order to apply Fourier analysis define 
the "n^üjtransform" of f(t) as the transform of a continually changing auxiliary function 

ff(x) for    x < t 

1 ^   0 for    x > t 

f -jarrfx, f     ..    ,     -12"'»,,, (3-16) 
St(f)   =   J    ftC^e dx   =   J    f(x)e dx . 

-O) -" 

The auxiliary signal will be identical with f(t) up to time T   and therefore ^^ deliver the 
same energy as  f(t).  It should be noted that in (B-15) and (B-16 . x is the variable o  inte- 
gration and t is any time T.  As a result of Plancherel's energy theorem and (B-X4/( the 
instantaneous power spectrum must satisfy the following relationship 

t 

J W(x, f)dx   =   |St(f) * (B-17) 

which is sufficient to determine W(t. f).  Differentiating (B-17) with respect to time gives: 

,2 (B-18) 
W(t,f)   =   (B/3t)|St(f)| 

t 

=   2f(t)    [  f(x) cos  27rf(x- t) dx . 
(B-19) 

The mean power spectrum WT) of a member f(t> of aa ergodic random process  [f(t)] 
may be expressed as 

CO 

W(T)   =   2 J   f(t)f(t+T) cos 2TTfTdi (B-20) 

By placing f(t) inside the integrand in (B-IS),,changing variables, and assuming' f(t) to be 
switched on at t = o, (B-19) becomes 

f » ,   , (B-21) 
V(t,f)  =  2 J   f(t)f(t + T) cos 277fTdr . 

0 

If (B-21) is averaged over the ensemble, 

t 

ÜftTT)   =   2 |  f(t)f(t +T) cos 277frdT . (B-22) 
o 

Since the time and statistical averages of an ergodic process are equivalent comparison of 
(B-22) ÄB-TO) shows that the stochastic average of the instantaneous power spectrum 
isymptrticaify approaches 1(75.  Kquatlon (B-22) shows how the power spectrum of the 
process develops In time. 

The instantaneous power spectrum W(t.f) is not unique.  Reference B-2.5 shows that it 
can have added to it a complementary function of frequency wc(t. f)  satisfying 
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J Wc(t,f)df   =   0 (B-23) 
• OS 

without changing the original signal.  If the instantaneous power spectrum of the same signal 
is derived by two independent observers, then at any time during the period of observation 
common to both observers the instantaneous power spectra may differ by the complementary 
function.  Conversely, if over any interval of time, two instantaneous power spectra differ only 
by a complementary function, then the corresponding signals are identical during the interval 
of time. 

RUNNING AUTOCORRELATION FUNCTION 

It is now of interest to examine the relationship the instantaneous power spectrum has 
with a correlation function which denotes the time bound.  Using (n-18) we get 

W(t.f)   =   0/3t)|St(f)|
2 (B-18) 

=   (3/3t)St(f)s;(f) . (B-24) 

From (B-16) we have, 

W(t.f)   =   (V3t)  J  ft(x)e-j2,rfxdx J  ft(s)e + i2,rf'ds (B-25) 
-00 _» 

»     « 
=   (d/3t) J   J ft(x)ft(s)e-i2,rf(x-,)dxds. (B-26) 

The auxiliary function f t(x) is used and not the actual signal f(x)  so the integrals above will 
have infinite limits.  H we let x-s = T, {B-26) becomes 

oo       a> 

W(t.f)   =   (3/3t)  J   J ft(x)ft(x-r)e*,2,'fTdxdr (B-27) 

• 00 

=   (3/3t) J     J  ft(x)ft(x-T)dx e-J2,"Tdr. (B-28) 

With reference to (A-47), the bracketed term in (B-28) is the temporal (finite energy) auto- 
correlation function of f t(x) or the "running autocorrelation function" ii.fr) of the sismal fCx^ 
Placing O/at) inside the integrand, WCt.f) may now be expressed as 

« 
W(t.f)   =   J   [(3/Bt)^t(T)] e'^'^äT (B-29) 

-0D 

and is the Fourier transform of the time rate of change of the running autocorrelation function 
This is the Wiener-Khintchlne relationship as applied to energy-bounded functions havingtime- 
dependent power spectra. 

If the signal is a nonstationary time series, ensemble rather than time averaging must be 
employed.   The bracketed term in (B-28) can no longer represent the autocorrelation function 
If we take the statistical average of both sides of (B-27) and carry out the indicated differen- 
tiation, we have 
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W(t,f)   =    J   ^(t,T)e dr 
-SB 

where 

j2-fr (B-30) 

sKt.r)   =   f(t) f(t -r). (B-31) 

Equation (B-30) is the Wiener-Khintchine theorem as applied to power-bounded nonstationary 
waveforms. 

ORTHOGONALIZED EXPONENTIALS 

A sinusoidal representation describes signal ensembles whose amplitudes do not vary 
with time.  Moreover, a decomposition into sinusoidal ^m^nents is appropriate whene^r it 
is desired for the elementary signals to be invariant under translation in ^me, that is, when 
Ä do not live to characterize th^ epochs or instants of time at which the ^ ««*««*» 
are created   A Fourier representation is very useful in describing the time averaged Proper- 
ties ofa system o° signal ensemble.  However, it is not well suited for discrim^Ung between 
siialsorfor detecting the occurrence of a particular signal against the background of a noise 
ensemble. 

It is often necessary to characterize a signal by both its epoch and structure.  Specif ring 
the epoch is required in determining phase information. Analysis of information-bearing 
sia^ is also concerned with a discrete representation of low dimensionality and a means of 
evaluation of performance which relates physical measurements wlto ^«^^fi^f^Vh»* 
mVthod for obtaining these features is to represent a signal by specifying the p^tor of ttiat 
Sal.  Since this entails an understanding of the basic physical ™echa«ism« inv°1!e

B
d.^i?

e 

generation of the signal, the parameters of the representation will acquire a deeper slgnlfl- 
cance and meaning. 

If f/t) is an impulsive excitation to a «ignal generator characterized by the response 
h(t.r) to a unit impulse applied at time r, the resulting response s(t), or desired signal, may 
be expressed as 

s(t)   =   J f(T)h(t;T)dT. (B-32) 

The problem in signal analysis would be to recover from the observed signal s(t) a specifica- 
tion of the excitation function f(T) and of the system function Kt.r). 

The signal generator Impulse response h(t.T) is best characterized by Its natural fre- 
quencies pk which appear in the exponent of terms having the form 

Ake
p-(t-T> (t>T) (B-33) 

where r Is the epoch. In practice, the pk parameters are quite difficult to determine, whereas 
toe amplitude coefficients are easily determined once the exponential factors are kno^   This 
suggests selecting another set of exponentials »k to approximate the original ^t, lea^ng the 
eSs and amplltaide coefficients to specify the impulse response.  For a class of functions 
SKdtrom damped exponential components, such as (B-33), a small number of Eje selected 
damped exponentials which cover a region In the left side of complex-frequency plane may 
provide a good approximation to any exponential having a frequency within that region.  No 
such approximation Is possible for a class of functions formed from sine waves. 

The problem of characterizing the system function h(t,r) Is to establish an appropriate, 
discrete set of exponentials that will approximate with allowable error over a semi-infinite 
time Interval the actual system function, I.e., 
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h(t,r)   =   2]VT)e!,k(t"r) (t>T) 
k 

=   0 (t <T) . (B-34) 

The variation of h(t,T) is then accounted for by the variation of the amplitude coefficients 
Ak(r),   The error criterion used is the mean-square error.  It is desired that the component 
functions be uncorrelated or orthogonalized, otherwise a change in the amplitude of one may 
be more or less neutralized by changes in the amplitudes of other components, 

■ 

In general, a frequency-domain analysis implies the specification of the amplitudes of 
fmany different waveshapes, all having the same epoch.  A time domain analysis, however, 

specifies the amplitudes of many different components, all having the same waveshape but 
differing in time of occurrence.  It is readily seen that a representation using orthogonalized 
exponentials is a time-domain representation. 

To conclude, the method discussed represents a signal by the convolution of two functions. 
The first characterizes the temporal attributes of the signal by the spochs and intensities of 
the impulses comprising the function.   The second function characterizes the structural 
attributes of the signal by the impulse response cf a generator.   The impulse response is then 
approximated by a sum of a number of orthogonalized exponentials corresponding to the nature' 
modes of the generator. 
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3.   FREQUENCY LIMITS 

BANDLIMITED FOURIER SERIES 

Fourier series representation converts a continuous function having a f*ite "u™*»f,r .f 

lor perioTT. frequency (N+i)/T has a zero coefficient and N/T a coefficient of finite value. 
The limit in frequency w is set halfway between the two: 

• = (T*IH (B-35) 

N + 0.5 (B-36) 
 ^  cps. 

The bandlimited Fourier series can then be considered as a finite vector representation con- 
taining 2N + l or 2WT coefficients. 

A waveform periodfo «0. period T, «to. llmlfod to « "^^'"'uc»c
T
le

v
s
a\

C
afs *" Vrlv 

"sine-over-sine" composing function, i.e., 

aw* gin v [2W(t *t0) - n] 
TT r2W(t + t0) - n] 

2Wr sin —^ ■ 2Wr 

(B-37) 

where the coefficients of the composing functions are taken at "^^^f^8^^;72* 
Seconds apart starting at some time less than 1/21», to(0 < t0 < 1/2W) (Figure B-Ua)). 

UNIFORM SAMPLING 

If the waveform under consideration has a Fourier transform it ^^ W™**^ 

ing the sampling theorem to a signal f(t) whose Fourier spectrum is rv j  i, 
«on of the signal is given by: 

'(*) = f^wW«--)- (B-38) 

The function *n(t) is called the composing function for the sample point t = n/2W and is 
given as: 

,  ,   ^ sin Tr(2Wt - n) (B-39) 
*"(*>   =       ^(SWt-n) 

The Fourier spectrum of the signal can be expressed in terms of the uniform sample values 
according to 



SAMPLING PROCESS SAMPLING THEOREM 
RECONSTR 

f(t)    = 

(•) 

FOURIER SERIES BAND-LIHITED 

If a band-iimited  Fourier series containing 2WT coefficients can  represent a waveform,   then 

2WT values,   properly  restricted,   of the waveform   itself will   also  be a representation.     The 

simplest of the many possible reconstruction  series   is  the one  having a  "sine-over-sine"  compos- 

ing function  where the coefficients  are taken  at  time   intervals spaced  I/2W seconds apart  start- 

ing at some  time  less  than   I/2W,   t9. 

2WT 

n=l 

0  <   t 

(b) 

UNIFORM:    LOW-PASS 

If the waveform under consideration has a  Fourier  transform   it can  be  represented  by an 

orthogonal   set of "sin  x over x"   sampling  functions.     Shannon's sampling  theorem states  that 

a band-limited  (0,W)  signal  whose  Fourier  spectrum contains no component above  frequency  W 

cycles per second  is uniquely determined  by  its values  at an   infinite set of sample pointj 

spaced  at  I/2W seconds  apart. n=-oo 

(c) 

UNIFORM:     HIGH-PASS 

If a complex wavefor.    f(t)  has  its  Fourier  spectrum confined within  the positive  frequency 

interval   (f0 -  ~ W,   f0 
+ ^ *) where f0 - | W.   then  it can  be uniquely determined  by   its complex 

values at  intervals   l/W.     If  f(t) =  g(t) +  jh(t),   then  the purely  real  weveform g(t) may  be 

recovered  by  specifying the ampl i tude ^(t^ + h(t)2    and  the  instantaneous  phase  angle  tan"1(h/g) 

at each  sampling point;   i.e.,   the envelope and  phase  of  the carrier. 

,..,      S ' f(n\sin 1 

f(t)   "   /  .     UJ     n{ 
0=-«) 

(d) 

DERIVATIVE 

If a function  f(t) contains  no frequency  higher than W cycles  per second,   it may  be 

determined by evaluating the  function amplitude  and derivatives at an   infinite set of  sample 

points spaced  (K+I)/2W seconds  apart,   where K   is  the order of  the highest  derivative when 

all   lower ordered derivatives are observed   in each  sample. 

First derivative:     K = 

4 
M 

Figure B-l - Several periodic sampling techniques for bandlimiti 
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RECONSTRUCTION  FUNCTION 

f(t)    =    2n   fCtJ   ^„(t) 

COMPOSING FUHCTiON FOURIER TRANSFORM OF 
COMPOSING FUNCTION 
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rau.) = ^.^f (^)e-^"/2W I^I <27,w 
n»-i» 

=   0 \a,\  > ITTYI. (B-40) 

It is seen that sampling a bandlimited function at the Shannon rate is equivalent to expressing 
it in terms of the coefficients of a Fourier aeries expansion of the spectrum (Figure B-l(b)). 

The process of periodically sampling a function f(t) instantaneously is the same as mul- 
tiplying the function by a train of impulses of unit area which are spaced uniformly at intervals 
equal to the sampling time, i.e., 

l(t)'   =   yjfCt) 8(t -n/2W) "     ' 

where f(t)* is the sampled series.   The waveform can finally be recovered passing f(t)* 
through a low-pass filter whose impulse response h(t) is 

h(t) =    a^wt    = ^(t) (B-42) 

A complex waveform f(t> whose spectrum is confined within the positive frequency 
interval (fo - 1/2W,  f0 + 1/2W)  may be uniquely determined by Its complex values at Intervals 
1/W.  The reconstruction formula for this case is given by 

'<*> = L 'W^T^^i^-s)}- (B-43) 
n--«o 

In order to apply (B-43) to a real waveform, it is only necessary to take the real part of both 
sides.  If  f(t) « g(t) + jh(t) we obtain foi g(t) 

»<" ■ t'(')"^'-v;'°°-M°(,-/'> 

z-© «in ^Wt - n) s.n 277f    t _ „/w) . (B-44) 
77(Wt - n) 0 

Equation (B-44) means that an amplitude  >/g3(t) + h2(t)  and an instantaneous phase angle 
tan'^h/g) must be specified at each sampling point.  They represent the amplitude and phase 
of the carrier.  For a bandwidth w,g(t) anu h(t) must both be specified at intervals  l/w, and 
the total number of degrees-of-freedom in a high-frequency waveform in time T is 2vr.  This 
is the same as for a low-frequency waveform, although the sampling interval is twice the latter 
(Figure B-l(c)). 

The concept of sampling also provides physical meaning to an exact bandwidth limitation. 
The Shannon expansion shows that a bandwidth-limited signal f(t) is entirely defined by the 
sequence of values f l, f 2. • • •. fn. • • •   taken at regularly-spaced times to,  t0 + T, ...,  t0 + nT 
(with T <* 1/2W).  The Imposition of an exact bandwidth limit on a general signal implies that 
the only values of the signal taken Into account are those at the uniformly-spaced times deter- 
mined by the Shannon rate.  This means that if different signals take on the same values at 
these times, they are no longer distinguishable after being filtered by an ideal filter.  Mathe- 
matically, a bandwidth limitation permits a continuous function be replaced by an enumerable 
sequence.  Physically it permits transmission of information more economically with a con- 
servation of bandwidth. 
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Two sampling theorems that find extreme importance in signal processing when th 
samples are S S regular Intervals and are Independent of the exact times of sampling 
are the following: 

1. Enciphement 

The magnitude of each sample may be varied in an arbitrary manner without increasing 
the frequency range of the samples. 

2. Relation between mean square of signal and its samples 

If the square of the signal does not contain a component of tef*™**^^?* 
integral multiple of the sampling frequency or two components such that ^ei\^s°Ji

u
ri

e
ft

s
fX 

or difference are also some integral multiple of the sampling frequency, then ^e sum ^ 
average of the squares of the samples will be equal to the mean-square value of the sampled 
wave. 
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4.   JOINT TIME AND FREQUENCY LIMITS 

INTRODUCTION 

Thus far, we have discussed descriptions of functions bounded in time or fre^ency and 
f„nrtionl not restricted in either of the domains.  The descriptions were found to depend on 
'Zl^T^STcLiäereä.  For an unbounded function, P^f« «^^ t^anXf 
zLtlTt ■« infinite which suffgests that a power description is more meaningful.  A transient 
conSs a Se amomit o" energy which implies that we use energy descriptions. When the 
Äions are time o^requency limited, the concept of sampling permits obtaining a complete 
?eDresentatTon    A Ume-Umlted function would be represented completely by an infinite num- 
Ef samples ofthe spectrum.  Similarly, a frequency-limited function ^^^^ 
extend over all time and would be represented by an infinite number of time samples.  When 
S function S boS time and bandlimited, we can no longer represent the function by an infinite 
numSro? independent samples in either domain.   The representation will always be an 

1 
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aDoroximation   its value depending on the number and type of elementary func"on« «se.^i" ^ 
decomTsUS'   Therefore, the primary difference between a function time or b^dUmUed a^d 
one UrHted teih in time and frequency is that the former mav be represented either approxi- 
mately'or complexly, while the latter can only be represented through an approximation. 

Theoretically, it is not possible to construct a Fourier pair, not equivalent to ™™  vhich 
has tlf proper^ that the fun^ion and its transform both ^^j^taite ^^8 of the 
conjugate variables.   This will be shown following the proof by Wernikoff (Ref. B-4.1J. 

If a signal is bandlimited such that its spectrum F(f) vanishes outside the frequency 
interval (-W,W) , i.e.. 

F(f)   =  0 for     t > |W| (B-45) 

it can be represented by an infinite sum of sin x/x functions: 

sin Tr(Tfit - n) V-' sin  TT(Wt -: 
f(t)    =    /_,  an       7r(2Wt-n) 

(B-46) 

where an is determined by examining the signals at times, tn, separated by intervals of 1/2W. 
That is 

•n   =    f^n)   =    {{W) 
(B-47) 

K f(t) is limited to (O.T) , the only samples that are not zero are ^ose taken in (0,T).   Then 
f(t) will be given by a finite sum of sin x/x functions, so that (B-46) becomes 

f(t) 
Esin sin 77(2Wt -n) 

2Wt -n) 
(B-48) 

where N = 2Wr samples.  However, the assumption that f(t) is limited to (Q,T) implies that 

L sin 7r(2Wt - n) 
7r(2Wt - n) 

(B-49) 

for all t outside the interval (0,T).  This requirement states that the toils of a ^ite "u«iber 
of sin x/x functions have to combine in such a way that they cancel each other completely 
outside the Interval.  Since the  sin x/x functions are linearly independent over any Interval 
there c^otSase  of nonvanishing coefficients an that satisfy this requiremen.   That is, 
Sere d^ notlSst S function, not equivalent to zero, limited simultaneously m time and In 
frequency. 

Representations of signals which last for time T and occupy bandwidth w may however be 
apprSated by 2WT coefficients. Since the sin x/x function falls off slowiy, the sample 
Ste determined outside the interval T may affect the signal inside the interval T. It was 
ÄatedthaTu is not possible to describe exactly a function which has a finite time duration 
fnd ünUe s^ctrL! SaÄdth. Actually, physical processes are ^^^^^S^.8* 
of the energy confined within a finite time duration and finite bandwidth.  If T is the approxi 
mate duratfonot the signal and W is its approximate spectral bandwidth, the signal may be 
^constructed to a high^egree of accuracy by its values at 2*T sampltag points Provided «^at 
^"fi    This product represents the same number of values needed to recover a function 
that can be represented by a bandlimited Fourier series. 

Sampling is an interpolation and the sampled representation of the £unc"on ^Pr°^« ^^ 
increase in the number of sample data.  When considering only a finite number of samples, 
Te to sampUng ov^a finlteTnteryal of time T, there will be an interpolation error which may 
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with the function beyond this interval.   The magnitude of this energy is a meas 
polation error, 

ELEMENTARY SIGNALS 

A time and bandllmited function may be decomposed ^ * ^^ÄÄSte "' 

deS « the successive time translates of <«t) by a time interval 0: 

<*n(t)   =   <*<t-ne) (B-50) 

*mn( t), will be generated.  These functions are expressec as 

*»«<*)  = -«t-"6)6 

(B-51) 

The effect of a unit change in index n is to shift the spectrum of f(t) by a unit of  I/o. 

This set of functions is complete in the sense that almost any signal M) may be writtenas 

f(t) £■ linn<Wt) 
(B-52) 

in Ume and frequency. We can also choose 0 " " " "J^TX, ^ ^ time domain. We 

representation in terms of frequency. 

The values of the amn ^^^Z^^J^^V'^i^l^^^ 0, 
f t) isalmo^equalto ö -ditsb^^ Cons'e^ently, the 
the values of the a,,,, do not vary s^"^"1"'_"   M . be selected for its analytic prop- 
SSS^^^'tt prStS.^™ i^»,r« Är.»^ i. pro«»., cc- 
cerning a physical problem. 

ANALYTIC SIGNALS 

quency and instantaneous phase, is the   ^^J;*18"* ;eal aiwai f(t) is one whose Fourier 

n\oi) = F*(ja>) 
(B-53) 
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where the asterisk denotes the complex conjugate, or equivalently 

|F(jaO|    =    \r(-}w)\ 

arg F(ja))   =   -arg F(-j<u) . 

If a real function of time x( t) has finite energfy, that is, 

(B-54) 

J x2(t) dt    exists and is finite (B-55) 

then we may associate a real function y(t) with x(t) such that the function z(u) = x(u) + jy('u) 
is an analytic function of the variable u = t + jö. The major requirements for this pair 
of functions which make z(u) analytic are: 

f 
1 

•-1,1 "w •ll 

'0,-1 •oo «01 

•-1.-1 
a-i.o •-1.1 

(•) 

f 

(b) (c) (ü) 

Figure B-2 - Time-frequency diagram of an arbitrary function 
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1. Each function of a pair has the same energy 

jx'(t)dt    =    |^t)dt. (B-56) 

-CO -00 

2. The functions are orthogonal 

|x(t)y(t)dt   =0. (B-57) 
.CD 

3. The Fourier spectra X( j*) and Y( jc) of x(t) and y(t), respectively, are related by 

YOOJ)    =   -jX(jai) when    u>0 (B-58) 

Y(j&))    =    jX(j<u) when    UJ<0. 

Due to restriction 3, the Fourier spectrum Z(ju,) of z(t) = x(t) + jy(t) has the properties 

Z(ia>)    =    2X(jaO for    ^>0 (B-59) 

=   0 for    oxO. 

Consequently, it is necessary to consider only the positive-frequency half of the Fourier fre- 
quency axis. 

By defining the analytic signal, the concept of an "instantaneous frequency," p(t), may be 
generalized, that is 

1    d   i- ,.,1   _    1   dqCt) (B-60) 
**>   3 ST di [arg z(t)J   "   2^ ^^ 

/.s      *    -i „/•^^/v^^>l    and mav be regarded to be the "instantaneous phase."  If x(t) is 
fcoSnewe  *en vÄ w Ul   "a stae'^ SSe same frequency and f(t) vJU becons^t, 
Lualto ^frequency of the signals.   The definition in (B-60) is similar to that used in the 
Sy of frequency modulation   The analytic signal may also be used to help distinguish the 
relatfonship^between the effective time duration and bandwidth occupancy of signals. 

TIME-BANDWIDTH PRODUCTS 

The usefulness of the concept of time-bandwidth Pr^ucV« ta P^^J" ^^"^^^ 
number of degrees-of-freedom that may be required to specify a signal.  The exact value win 
Seiend on the definition of duration employed and the particular sugnal being ^Vf *•  K *s 

nftPn desired to resolve a signal into a series of elementary functions to which one, and only 
0
XXM?™™*C^& assigned   One way of selecting these *™**%™?*™*£ 

so that their time-bandwidth product will be a minimum (Ref. B-4.2).  Other criteria may aibo 
be established. 

If the elementary signals chosen have a constant period, for example, a sine wave, then the 
a™t of SL^maUon transmitted in one period will be Identical to that In any other period 
H^efer   l?Se"lementary Sgnal Is such that the "distance" between the zeros Is constantly 
cSg\?s^Ä cat for a Bessel function) then the Information transmitted during 
each Servil will be continually changing.  This may result In a whole "family' «* W™«- 
bandwTdth products.  Consequently, the time-bandwidth product Is dependent on the structure 
of thrzero-crosslngs of the elementary signals and time-variant or time-invariant elements 
are needed for transmission. 
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Lampard (Ref. B-4.5), has shown that by expressing an "equivalent duration" AT arid an 
"equivalent bandwidth" Af in terms of the autocorrelation function ./<T) and power spectrum 
W( f) of the signal, the identity 

Ar Af (B-61) 

is valid, provided the power spectrum of the signal extends down to zero frequency.   For a 
transient signal and stationary time series: 

H I//(T) dr (B-62) 

AT 

and 

0(0) 

W(f) df (B-63) 
Af 

W(0) 

The widths 2AT and l/2Af  represent the widths of the rectangles having the same areas as 
those under the correlation function and power spectrum, and having the same ordinate at T = 0 
and f = 0, respectively.   These definitions, (B-62), and (B-63), are particularly appropriate 
for cases in which  W(n < W(0), for all f. 

For the case of two nonstationary time series, we may use definitions of time dependent 
correlation functions and power spectra given in section B-2.  The identity (B-61) is still valid 
where 

AT 

and 

Af   = 

J   l^ia^-7") + *2i(t',7")]dT 

0 

[072(t,O) + -/-aift-0)] 

OB 

J    [W12(t,f) + W21(t,f)]df 

[W12(t.O) + W21(t.O)] 

(B-64) 

(B-65) 

It is interesting to note that though (B-64) and (B-65) are continuously changing, individually, 
for each instant of time, their product remains constant or time invariant.   Thus, the time- 
bandwidth product presented here for a nonstationary time series is related to that when a 
signal is resolved into nonharmc.ic elementary signals.  Equations (B-64) and (B-65) reduce 
to (B-62) and (B-63) if the time series approaches its steady-state behavior and both time 
series are equal. 

We can also use a definition of duration analogous to that in quantum mechanics, namely 

J    (x-Xo)2|s(x)!2 dx 

(Ax)' 
(B-66) 

J   |S(x )\*d* 
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where 

<J0 

-I x|s(x) I    dx . 

The x is an arbitrary variable, can be time, frequency, displacement, etc., Ax signifies a 
duration in x, and s(x) is the Fourier description in the corresponding domain.  In (B-6f.)8 Ax 
has the form of a standard deviation which in engineering terminology is an rms value. 
Equivalently, (B-66) may be considered as expressing the spread in x as the variance ol 
|s(x)|2; x0 would then represent a mean value. 

If (B-66) is used to calculate the duration At and the corresponding radian bandwidth Aa of 
a signal, where s(x) is now the waveform and Fourier spectrum respectively, the Schwarz 
inequality may be used to give the result 

At   -A*   >i. (B-68) 

Gabor (Ref. B-4.2)s showed that the equality holds when the pulses are of Gaussian form; A<a is 
then the radian bandwidth required to transmit a complete pulse in time At.  If the functions 
f(t) are real, then provided tnat F(O) = 0, (B-68) becomes 

At A£u+   >   2 
1 (B-69) 

where Aö+ is the variance of   |F+( j«) |2, the square of the magnitude of the positive-frequency 
spectrum of f(t).   By replacing f(t) by an analytic signal, Ft(ja)) is defined as 

F+(i")   =   ZFCi«) "^ 0 (B.70) 

=   0 co < 0 . 

Note the absence of the equality sign in (B-69). It was indicated above that an equality can be 
achieved for Gaussian pulses, but these have negative frequencies in their spectra which con- 
tradicts the assumption of an analytic signal.  Thus, an equality cannot be obtained.  If F(0) f 0, 
then Kay and Silverman have shown (Refs.B-4.6and B-4.7), that we may write (B-69) more 
generally as 

At A^   > 1 | 1 - 2 |F(0) | 2 <a0+| (B-71) 

where a)0+ can be considered to *": the centroid of the positive-frequency spectrum of f(t). 

The convolution of an input to a physical element with its impulse response is a degraded 
form of the input in the sense that any time-structure which is fine, compared with the ele- 
ment's "time constant," is smoothed out.   The time-structure of any waveform may be 
expressed in terms of a temporal autocorrelation function; a measure of the smoothness of 
the waveform may be described by comparing its values at any two instants of time.  It is 
also, to some extent, a measure of the "time constant" of the waveform. 

Woodward (Ref. B-4.9), used the integral of the square of the normalized autocorrelation 
function as a measure of temporal extent.   Taking absolute values (i.e., disregarding time 
structure), this is expressed as 

CD 

J :*«is*. M- <B-'2) 

When f(t) and f(t + T) become orthogonal or independent relative to each other, the cor- 
relation and consequently (B-72) vanishes. Since this occurs when r is large and the constant 
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|r|  has the dimensions of time,  |r|   may be considered to be a measure of iJie time-constant 
of the waveform, T,  We then have 

-00 

or equivalently 

as 

T  =   /  |F(f)|4df (B-74) 
-CD 

where F(f) is the Fourier spectrum of the waveform  f(t).   Thus, T is a measure of the lack 
of orthogonality between the waveform and the same waveform displaced in time.  Its recip- 
rocal, l/T, is a measure of the frequency spread of   |F(f)|2. 

Similarly, a "frequency constant," F, for any spectrum F(f) may be written as 

F  -  J   |G(*)|2d0 (B-75) 

where G(<^) is the phase corrielation function defined by (A-7 5).   Equation (B-75) may also be 
expressed in the form 

oo 

F   -    J    |f(t)|4dt. (B-76) 

Thus, F is a measure of the lexk of orthogonality between the spectrum and the spectrum 
linearly displaced in frequency. Its reciprocal, l/F, is a measure of the extent to which 

j f(t) |    is spread out in time. 

The product of the structural time constants T and F is 

a eo 

TF  =   |   |</<r)|2dT |   ]G(0)|2d0. (B-77) 

Changing the order of integration and combining the squared terms gives: 

oo      a» 

TF   =   J    J    |0(T) G(*)|2dTd*. (B-78) 

However, we have found that 

«KT,*)   =  ^T) G(i)!.) {B-79) 

if f(t) is unmodulated.  Substituting (B-79) into (B-78), 

CO       00 

TF   =    j    f    i^(r.*)|2dTd* (B-80) 
«00   -u) 

which, from (A-84) and (A-85), equals unity, 

TF  =   1 . (B-81) 
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In general, the product TF is not invariant for ail waveforms since (B-78) is its general 
definition, and not (B-80).   The latter is a special case.  If the waveform is linearly frequency 
modulated, then 

Mr,4>)   >  0(T) G(4>) ■ (B-82) 

Therefore, for the case of linear FM 

CD OJ 

TF   «   J   J    \MT,<t,)\2drd4> (B'83) 

.IB     .00 

TF   «   1 . (B-84) 

The product TF if a measure of ihe lack of orthogonality between the waveform and the same 
waveform displaced both in time and frequency.  However, it Is not an invariant measure as 
that formulated in (A-84) since it is usually dependent on the details of the waveform. 
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C.   EXAMPLES OF DESCRIPTIONS 

Previous sections were concerned with, methods of analysis available for representing 
functions, and the effect and importance of bounds on the representations.   Bounds may be 
deterministic or statistical, or both — as they are for most problems in signal processing and 
their descriptions including the Influence of bounds often constitutes the primary and the most 
difficult objective.  The selection of a suitable representation for a signal may be made by 
considering the property to be characterized, and the use which is to be made of the repre- 
sentation.  The fundamental concepts will be brought out by illustrations of deterministic, 
statistical, correlation and spectral descriptions of a few bounded and unbounded waveforms. 
Specifically, bounded and unbounded periodic waves and stationary random waveforms. 

An infinite sine wave. Figure C-l(a), may be completely represented in the frequency 
domain as the sum of impulses at the positive and negative fundamental frequency, each con- 
taining half the power per period.  Its autocorrelation function is periodic with the frequency of 
the sine wave and deletes all phase information, that is, if 

x(t)   =   A sin  (at + 0) (C-l) 

then 

-AO)  = A2 
COS   CilT. (C-2) 

If the sine wavf is bounded (Figure C-l(b)), consisting of a finite number of periods, the 
power is redistributed into major lobes at the fundamental frequencies and sidelobes.  As the 
number of periods increases, the magnitude of the major lobes increases correspondingly and 
in the limit to an infinitely extended waveform, the Fourier spectrum will tend to become 
impulses.  The autocorrelation function of the sine wave given by (C-l) bounded to   |t|  < T may 
be expressed as 

0(T)   =   AT cos 01 r 

=   0 

I" sin 2a.0Tl 

L        2-oT   J 
for    T    < T 

for   |r|   > T. (C-3) 

This has Use dimenisions of energy while (C-2) has the dimensions of power.  This is attributed 
to the unbounded waveform being "power bounded" whereas the bounded waveform is "energy 
bounded." 

Although a unit impulse function (Figure C-l(c)) may appear to be bounded in time, it con- 
tains an infinite amount of energy, thereby implying an unbounded state.  Its energy is propor- 
tional to the bandwidth and is therefore concentrated at the extremely high frequencies.   The 
Fourier spectrum of the unit impulse has unit amplitude and zero phase for all frequencies. 
All the frequency components are in phase at  t = T, which accounts for the height of the 
impulse at the specific instant of time. 

If the unit impulse is repeated indefinitely at regular intervals (Figure C-l(d)), a train of 
impulses results having Fourier spectra also consisting of a train of impulses.  Its autocor- 
relation function and power spectrum will be similar in form.   The resultant waveform is now 
bounded in power. 

The step function (Figure C-l(e)) is discontinuous at t = 0 and needs two specifications, 
for  t >0 and t < 0, to describe it in the time domain.   The advantage of representing it in the 
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FiBure C-l (Continued) - Deterministic and correlation and spectral 
analysis of several  bounded and unbounded waveforms 
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Figure C-l - Deterministic and correlation and spectral analysis 
of several  bounded and unbounded v/aveforms 



58 

frequency domain is that it has a continuous spectrum and hence, needs ^»«^/Pf0"1^' 
Hon tor -presentation.   Because of the concentration of high amplitude at the  ow end of the 
sptct^m^ow- Shigh-frequency effects are more equally depicted than for the unit impulse. 
This is a type of smoothing since the unit step is the integral of the unit impulse. 

A pulse (Figure C-l(f)) has a sin x-over-x Fourier spectrum, which is the tor™ of the 
response of a liÄear low-pass network to an impulse function.   It can be ^sidered to be a 
bounded step function, causing sidelobes to develop in the F^^6^«P60^*» ^fy^1!?1 a 

bounded sine wave.   The autocorrelation function is triangular having a width equal *> "je 
duration of the pulse and a continuous power spectrum having the form   sin2 x-over-x , infinii.e 
in extent. 

If pulses are repeated at regular intervals T (Figure C-l(g)) the autocorrelation function 
will allo be periodic with period T. For a pulse height E and duration d, the autocorrelation 
function is given by 

4,(T) (d -   |T + nT|) 
(C-4) 

where   |T + nT|  < 
of  1/T and a sin2 

d.   The power spectrum is now discrete having components at integral values 
x-over-x2 envelope. 

A wide Gausbian pulse (Figure C-l(h)) has a low-pass Gaussian Fourier spectrum.   This 
illustrates the property of reciprocal spreading between conjugate Fourier descriptions    The 
Swer spectrum is also Gaussian and low-pass, and is of considerable import^ce because .t 
simulates the gradual cutoff which is more representative of actual networks than abrupt tian- 
siüons of idealized filters.  A computational advantage of the Gaussian power spectrum is that 
its Fourier transform, the autocorrelation function, is also Gaussian. 

A tram of real positive Gaussian pulses is shown by Figure C-l(i), varying in amplitude 
according to a wider Gaussian envelope.  Assuming that the pulses do not overlap and that a 
Targe number J them have comparable amplitudes, the forms of the Fourier conjugate descnp- 
ttons are the same differing only in their parameters.  If (At)    and (A.)   are the time and 
frequency "widths" of the envelope, respectively, using the definition of duration given in 
(B-66), the time-bandwidth product for the envelope is 

(At), (Aa.), > 2 
(C-5) 

in accordance with (B-69).   For a pulse time duration of (At)    and bandwidth (A»)«, «»e inter- 
relationshTp LTween Gaussian pulse and envelope may be partly expressed by the following: 

(At)e (A«)     =   (At),, (A«),  =   2 
(C-6) 

The modulation has produced a lower limit for the time-bandwidth product measure of inter- 
dependency. 

In general, the power spectrum, like the autocorrelation function, represents second-order 
statiSiSand does not give a compete description of the process.  However, if the process has 
SfssL probability function, as in Figure C-l(j), statistics of all "1**™^^ 
in terms of the second order only.   The autocorrelation function and power spectrum would 
then represent complete descriptions. 

A deviation from the conventional indeterminate relationship between time duration smd 
bandwidth is best depicted by the joint autocorrelation function.  It is shown in Figure C-2 for 
Sft^in of Gaussian pulses discussed above.   The joint correlation i™^**^*** * 
lattice of elliptical Gaussian peaks having amplitudes which vary according to a Gaussian 
envelopV indicated by the dotted contour.  If T0 is the period of the pulses, the structural time 
constant (T) is 
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XT,«) 

Figure C-2 - Squared envelope of joint autocorrelation 
function of a train of Gaussian pulses varying in ampli- 
tude according to a wider Gaussian pulse 

T  -   i l^_i&t2p (C-7) 

and the frequency constant (F) is 

F =  2T0(Af)e (/if)p. (C-8) 

Using (C-6),the product of T and F is found to 
equal unity, 

TF 1. (C-9) 

This is attributed to the separability of  the 
joint autocorrelation function of Figure C-2. 

Statistical descriptions exist for the wave- 
forms above but they do not simplify the repre- 
sentations. Figure C-3 shows the probability 
density function and characteristic function 
for an Infinite sine wave,a train of pulses,and 
a stationary Gaussian process. The density 
function for the sine wave (C-l) was obtained 
for t fixed, the random variable e uniformly 
distributed from -n to TJ, and is given as 

TYPE OF 
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8T«TUTIC«L »HALYSIS                       j 
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i . 

jlCCJv) 

^a: ^J 
-> 0          A 1 

TUIK OF 
PULSES 

oo 00 

1 
2 

i 

X i 
0 1 

STATIODMY 
QMISJIM 
MVEFOIM A A 

1  ' 0 1     1 
Figure C-3 - Statistical analysis 

for several waveforms 

P(x)   = 
77 (A2   -X2) 

0 

1/2 
for     |x|   < A 

for > A (C-10) 

For the train of pulses, there are only two values equally probable, x = 0 and x = l, so that 
the density function Is concentrated at these points in the form of Impulses, each of area 1/2, 
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P(x)   =   I S(x) + |S(X-1). (C-11) 

The densitv function for a stationary Gaussian waveform is clearly Gaussian and possesses the 
Jrop^rWes peTuha" to such functions. For the waveforms illustrated, correlation and spectral 
analysis may be adequate. 



D.   ADDITIONAL DESCRIPTIONS 

1.   INTRODUCTION 

The imposition ot bounds on functions has led to the concept of sampling which permitted 
specifying the functions by discrete values.  The discrete values need not necessarily be values 
of the function.   They can be values of other significant parameters such as derivatives of 
various orders or integrals.   Too, the samples need not be uniformly distributed.  However, 
their use would require knowledge not only of magnitudes but also of the time instants at which 
tney were obtained. 

2.   DERIVATIVE SAMPLING 

One extension of the sampling theorem permits the determining of the periodic sampling 
interval when the instantaneous sampling includes the amplitude and derivative values. 

When the first derivative alone is added to the function amplitude sample, toe sampling 
interval is T, = l/W, which is twice the Interval required when only amplitude samples are 
made. Addition of each succeeding derivative allows the time interval between samples to 
become larger according to T, = (K+l)/2W where K Is the order of the highest derivative when 
all lower ordered derivatives are observed In each sample. 

The sampling theorem may be stated as follows:   If a function f(t) contains no frequency 
higher than W cps. It Is determined by giving M function derlvate values at each of a series of 
points extending throughout the time domain.  The sampling Interval Ts = M/2W Is then the 
Interval between Instantaneous observations.  The recovery formula when the derivative values 
are Included becomes Increasingly complex.  For the case when only the function and Its first 
derivative are considered, the equation becomes: 

f(t) ^ [^w) + (t - „/w) fww)] [8i:(vt
w!n-)"

)] (D-l) 

The composing function and Its transform Is Illustrated In Figure B-l(d). 

It should be pointed out that this does not conflict with the previous statement that 2WT 
sample values are required to specify a function of duration T and bandwidth w. Actually, it 
indicates another method by which 2WT Independent samples may be obtained. 

Consider the case where N equals N/2 amplitudes and N/2 first derivatives of the signal. 
A Fourier analysis will then yield the amplitudes of N/4 sine terms and N/4 cosine terms so 
that all harmonics up to the (N/4)th will be known.  In order for a channel to pass all har- 
monics up to  (N/4T), Its bandwidth (BW)'   must be at least 

(BW)' 
4T 

(D-2) 

Since It Is assumed the N symbols still contain the same Information as when N represented 
amplitude values, 
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N   =   4T (BW)' 

(BW)'    =   f 

2WT 

The Shannon sampling interval, T,, is then equal to 

T.   = 1        - 
2(BW)' " 

The same reasoning is valid when the N symbols are comprised of 

N/3 amplitudes = n/6 sine terms plus  a/6 cosine terms 
+ 

N/3 first derivatives 
+ 

N/3 second derivatives 

The effective bandwidth (BW)' is given as 

(BW)' N 
CT 

6T(BW)"  = 2Wr 

(BW)'   =   1 . 

(D-3) 

(D-4) 

(D-5) 

(D-6) 

(D-7) 

(D-8) 

Hence, when the second derivatives of the function are considered, the sampling interval may 
be expressed as 

T.   = 
Z^W)" 

These results are tabulated below: 

3 
2^' 

(D-9) 

K = Order of derivative 0 1 2 

Sampling interval 1/2W 2/2W 3/2W 

and leads inductively to the following formula: 

Sampling  Interval   = K+ 1 
2W 

(D-10) 

3.   NONUN1FORM SAMPLING 

NONUNIFORM AMPLITUDE SAMPLING 

It was mentioned earlier that a number of approximations can be used to represent a given 
function.  One type of approximation is the Lagrangian interpolation polynomial whose values 
coincide with those of the given function at a specified number of points.  Any polynomial of the 
nth degree is exactly specified by n + 1 points and has n zeros (including multiplicity of 
zeros).   The Lagrangian polynomial has the form 

f„(t)   =    f0L0 (t) +  f,^ (t) +   •••  +  fnLn (t) 

where L jn(t) is fie Lagrangian coefficient defined by 

(D-ll) 



L-Ct)   = 

This has the property: 

(t-OCt-t.) (t^tj^Xt-tj^)  ■•• (t-tn) 

(tj' toKti-ti) 

Lj(tl> 

)(tj-tj + l)   •■•   (tj-tn) 
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(D-12) 

(D-13) 

so that each sample point in time will correspond to only one term in (D-ll) which will have a 
coefficient of unity. Thus, It can be seen that the entire polynomial will agree with the sample 
data at each of the sample points. This interpolation polynomial which yields f j at t = tj for 
0 < j < n can be put in the form of (D-ll). 

If gn(t) is defined as 

g"(t) = n4 i1 - k) 
then the Lagrangian coefficient can be expressed as 

8„(t) 
L„(t) 

(t^tn)   BnCtn) 

Making the Lagrangian interpolation polynomial 

= Z] '<'" 

more inclusive, (D-ll) becomes 

.) Ln(t). 

(D-14) 

(D-15) 

(D-16) 

(D-17) 

This is quite similar to the reconstruction fcrriiula when employing uniform sampling, i.e 

f(t) = 2Z ^ t J *n<t) 

sin TT(2Wt - n) 
w(2Wt - n) 

(D-18) 

(D-19) 

Therefore, (D-17) can be considered to be the ^orm of a general sampling theorem for arbi- 
trary sampling instants tn which reduces to (D-19) as a special case for  tn = n/2W.  Con- 
sequently, for systems dealing with discrete sitnals occurring at irregular intervals, one may 
employ ä nonuniform amplitude sampling wherfthe sampling function is expressed in terms of 
the Lagrange interpolation funcüons. Although the instants of sampling tn are arbitrary, the 
average spacing between successive instants te  1/2W. In all sampling schemes the average 
rate of sampling cannot be less than 2W per second (the Nyquist rate). 

Figure D-l illustrates six methods of sampling 
tion T.  The first (a) is uniform amplitude 
tive sampling of increasing order (assuming 
tion).  It is seen that for the size of the 
(a), (b), (c), (f), are uniform, where only the 
pies need be known.  In process (d) four 

over a finite time interval having a dura- 
sampling and the remaining five (b-f) depict deriva- 

the derivatives exist at the point of evalua- 
sampling interval (1/2W)  chosen, sampling processes 

value of the amplitude or derivatives of the sam- 
evaluätions at t. are made.  To complete the necessary 
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amount ©f data we can sample at 1/2W for the remainder of the interval and obtain the sample 
values (amplitude) received in process (a) at instants ts and t6 or sample at 1/W and obtain 
the two sample values (amplitude and first derivative) received in process (b) at instant  t6. 
No matter which sampling technique is used to complete the evaluation of the function in the 
interval, because more than one technique was used for a complete analysis resulting in non- 
uniform sampling intervals, it is necessary to have a knowledge of not only the magnitude of 
the 2ffr iäample points, but also the instants at which they were taken.   Then, and only then, 
can the signal be recovered.  A similar analysis can be applied to process (e). 

Reference (D-3) indicates that the interpolation functions, Ln(t), are bandlimited as long 
as the number of nonuniform intervals are finite, and derives four generalized theorems for 
describing the nonuniform sampling of bandlimited signals. 

Thorem I:   Migration of a Finite Number of Uniform Sample Points (See Figure D-2) 

If a finite number of uniform sample points in a uniform distribution are migrated to new 
distinct positions t = tp  thus forming a new distribution denoted by  t = Tm, the bandlimited 
signal f(t) will be uniquely defined.  When N uniform sample points located at t = np/2W, 
where .•    with p =  1, 2, .. .N are H distinct Integers, are migrated to N new positions  t = tp, 
2Wt   Is not an Integer, 

T-2 '-1 '0      '1 '2 

Figure D-2 - Sample point distribution for Theorem I 

Theorem H:   Sampling with a Single Gap In an Otherwise Uniform Distribution 
(See Figure D-3) 

When the number of shifted uniform sample points Increase without bound. Theorem I Is 
no longer valid and the reconstruction function will generally become extremely complicated. 
A special case which Is simpler In analysis Is If half of the uniform sample points, say all 
those with t > 0, are shifted by an equal amount with respect to the rest. All sample points 
may then be denoted by Tm with rm = At + p/2W where p = 0. 1. ....  For such a distribution, If 
the gap At Is positive and less than 1/2W the signal Is uniquely specified. 

This theorem illustrates the effect that a particular determination of the sample points of 
a signal has upon the reconstruction. When o < At < 1/2W, the signal can be uniquely recon- 
structed.  It should be noted that when the number of samples are finite and equal to 2WT the 
reconstruction series will reduce to one having a slne-over-slne composing function.  If 
1/2W < At < 2/21, then the signal will be determined except for one arbitrary constant; this 
process Is known as underspeclflcatlon.  If -1/2W < At < 0, then the sample values cannot be 
arbitrarily assigned but must satisfy a consistency condition; this Is known as overspeclflcatlon. 

Theorem III:   Recurrent Nonuniform Sampling (See Figure D-4) 

If the sample points are divided Into groups of N points each, having a recurrent period of 
N/2W seconds, in one period the points may be denoted by tp, P = l, 2, ... N.  For such a 
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Figure D-3 - Sample point distribution for Theorem II 

distribution, a bandlimited signal is uniquely determined by its values at a set of recurrent 
sample points   t = TpiI1 = tp + inN/2Ws p = i, 2 N; m =  -1, 0, 1,... (m denotes group 
designation). 

tl~ 2W 

2W 
2W 1      2W 

,      n 
2W 

•t. +- 
2W 

t^is 

t +-1- ta+ 2W 

t = T 

Figure D-4 ~ Sample point distribution for Theorem III 

Theorem IV:   "Minimum-Energy" Signals 

A time-limited (T) signal of finite bandwidth (W) may be specified by 2WT equally spaced 
samples or by 2WT arbitrarily distributed samples using Theorem I.  If we do not wish to 
specify the time interval, 2WT arbitrarily distributed samples can be used to uniquely define a 
"minimum-energy" signal, that is, a signal f(t) with no frequency component above w cps 
whose energy 

(a 

I f(t)2   dt 

is a minimum.   The time interval inferred is that corresponding to the passage of this minimum 
energy.  When the sample points are taken from a uniform distribution, the time-limited and 
minimum energy signals become identical. 

F-om the reconstruction functions for 'he theorems given above, formulated in Table D-l, 
it is Enen that for a nonuniform distribution composing functions for different sample points do 
not have the same form.  Also, as the sample point deviates more and more from the uniform 
one, the composing functions become Increasingly complicated.   For a uniform distribution the 
maximum value of a composing function for a particular sample point occurs at the sample 
point and is unity.  In a nonuniform distribution, the value of the composing function at its 
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particular sample point remains -"y  al^oug^his may not be U^^ 

Sample points are bunched closer ^^^^^^chtag wxu tend to become larger.   This can 

ÄKÄ^^ tor the 8ample ^distributlon 
corresponding to Theorem I. 

I     !     i     »     '     » 

M0HUH1F0RM SAHPLIHG 

(Theorem I) 

HOTE DIFFERBtCE  IN  SCALES 

Figure  D-5 - A co.nposin, action fox the -^pie^dist.lbut^ 
fromthe migration of uniform sample points  t - ±2/3 
and t =   ±3/8* 

When tWo adjacent sample P^re b^ched^ 
ta the values of the signal and it8/f"vativ^^'f^^ateT acc^acy is needed in determin- 
^alues of the derivative is ^^'^^^^ Sl^cZn.  Consequently, for physi- 
ing the sample values for an accurate reconstr^Uon^n     distinguishable signals in an 
cal systems with K™** ^^^L^^ZlZly decrease even though the degrees- 
observation process employing nonumform sampling may 
of-freedom are preserved. 

1 
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In view of what has been said, a general sampling theorem may now be given as follows: 

If a signal is a magnitude-time function, and if time is divided into equal intervals of T 
seconds where  T = N/2W, and if N instantaneous samples are taken from each interval in any 
manner, then a knowledge of the instant at which the sample is taken determines the original 
signal uniquely. 

A sampled wave can be represented by any set of 2WT independent numbers associated with 
the function, and these represent the least number of values capable of completely and uniquely 
defining the function.   This includes derivatives and integrals.   The total number necessary 
per period is fixed and need not be equally spaced.  If the independent numbers are bunched to 
a substantial extent, the values must be known with extraordinary precision to afford accurate 
reconstruction of the function. 

SAMPLING THE  ZEROS OF BANDLIMITED SIGNALS 

One form of nonuniform sampling is the sampling of the zeros of bandlimited signals.  In 
this method, the sampling points are determined by the characteristics of the signal containing 
the message.  Information is transmitted over r channel by preserving the occurrence of zero 
crossings rather than denoting amplitudes or slopes at specified instants. 

In general, the average rate of zero crossings of a bandlimited signal is less than the 
Nyquist rate.  However, the use of high-order derivatives of the signal will result in a wave- 
form whose zeros approach the Nyquist rate though they will be very closely correlated and 
will no longer represent independent samples.  A continuous bandlimited function will include 
"complex conjugate" zeros which, unlike real zeros, are not physically detectable, and will 
tend to cluster along the real axis. 

The above considerations leads to the following formula which gives the synthesis of a 
bandlimited function with a given set of real and complex zeros within an interval, assuming 
real zeros at the Nyquist rate outside the interval: 

f(t)  =   £   (-1)" An 1 - ' (D-20) 
TT (2Wt - n) 

where: 

n^z    U (2WZm - n) 
An   =    fW     N"        7T\T      N  

/7   - ( m j      /7    (m - "> 
a.I *     '       m.-N 

(D-21) 

Zln   -   complex zeros   =    t,,, +  jum 

N   =    Integer not  exceeding WT (N S W"") . 

This can be seen to be very similar to the uniform sampling formula for a bandlimited function. 

The amplitudes at the sampling points (An) can be expressed in terms of the migrations of 
the zeros from the uniform sample point locations.   The results show that the location of a zero 
(or migration from a sample point location) affects the amplitude of tie signal in its immediate 
vicinity but does not have a marked effect on the signal at a much earlier or later time. A 
large migration, resulting in a large interval between successive zeros, will produce a large 
signal amplitude. 

A binary signal, such as Infinitely clipped speech, can be replaced by a bandlimited signal 
having the same zero crossings.  If the complex zeros are included, the bandwidth is increased 
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and the signal amplitude reduced from that which ™^!^^ 
^PKie ninstrates how bandwidth may be exchanged tor signal 10 ntn&e i* 
S Sansmltted6.8 An ilCration of Sie theory given is shown In F.gure D-6. 

BINARY  SIOHAL 
-it -2tl l_Jl HL-JZ   i3-T 2« 

„I     SPECIFIED      L— 
I    INTERVAL T 

RELATIVE 
AMPLITUDE 

1 
t = 2W 

Figure D-6 -  Bandlimited signal having 
specified zero crossings 

The abrupt crossings ^^^^^^^^T^Zll^^l^^^' 
the migration intervals ^ ^f a^1^ ^^J1^"^.  Thls Would give 2W average 
vidual amplitudes proportional to *e

f.
c°"e^™"^ Se0retical transmission bandwidth remain- 

"-M 
DISCRETE SIOHAL 

J^L2i^ ^ZI^ 
Fißure D-7 - Conversion of the migration of zero "«"jf*» °f 

I  discrete    signal to pulse    amplitude   at   uniform   lntervals 
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4.   AMPLITUDE QUANTIZATION 

A continuous signal with a finite amplitude range will have an infinite number of amplitude 
levels.  It is not possible or necessarv to transmit the exact amplitudes of the samples.   Con- 
sider the sample in Figure D-8.  A signal may be transmitted with a finite number of discrete 
amplitudes if all samples such as OM can be considered equal when M lies within the amplitude 
range q.  It is then permissible to represent and transmit all amplitude levels within this 
range by one discrete amplitude ON.  The signal recovered will be different from the original 
but since the maximum enor cannot exceed one-half step, the deviation from fidelity can be 
reduced by increasing the number of quantum states or amplitude levels, keeping the total 
amplitude range constant. 

Figure D-8 - A quantized sample 

T M „  
1__    1  __ 

Representing the signal by certain discrete allowable levels only is called quantizing:. It 
inherently introduces an initial error in the amplitude of the samples, giving rise to quantiza- 
tion noise.  This is the difference in signal power before and after quantizing. Quantization is 
a nonlinear operation which occurs whenever a continuous physical process is represented 
numerically.  Use of quantization within a system may complicate analysis.  However, there 
are methods which may reduce the complexity for some applications. 

A quantizer is a device which processes continuous data or sampled data.  It has the 
property that an input lying somewhere within a quantization "box" of width q will yield an 
output corresponding to the center of that box.   The input-output characteristic of a quantizer 
is illustrated in Figure D-9.  The probability density of the output, p'(x), will consist of a 
series of impulses that are uniformly spaced along the amplitude axis.  Each impulse will be 
centered in a quantization box and have a magnitude equal to the area under the probability 
density p(x) within the bounds of the box.  The quantizer output distribution P'(X) consists of 
"area samples" of the Input density p(x) and the quantizer may consequently be thought of as 
an area sampler.  Therefore, amplitude quantization may be considered to be a sampling of the 
probability density of the functions In question. 

OUTPUT 

INPUT OUTPUT 

X' 

INPUT 

THE QUANTIZER 

INPUT-OUTPUT CHARACTERISTICS 

Figure D-9 - The quantizer and its input-output characteristics 
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The nrobabiUty density of quantization noise Qn is independent of the P'^iUty density 
ofthe^Ä^ 
when the radian '«"e^8S,   * l^J! ScoZllely recovered from the quantized density 
^TxrTtTsSttion ol^öiÄr^edTy^e quantizer will then be flat-topped having a 
sin x-over-x characteristic function. 

Q^llam« c» to consWered as a sampllns process »" "'» ^»^^ SS*" 

quantization is sufficiently fine, the statistics are recoverable. 
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E.   DESCRIPTIONS OF SPATIAL STRUCTURE 

1.   INTRODUCTION 

Previous sections have discussed the representation of functions where time was implic- 
itly or explicitly indicated as the independent variable.  A number of descriptions and rela- 
tionships were outlined.   Their use was indicated to be jointly dependent on the type of function, 
and on the use which 'was to be made of the descriptions.  Conditions under which deterministic 
ai.d statistical analyses were preferred or permissible were given.   The existence of bounda- 
ries in time, or in the conjugate domain, frequency, was seen to play an important part in 
determining the type of description which could be used for a particular problem.  Bounds 
imposed jointly on the conjugate domains involved other important classes of descriptions. 
Additional representatives were discussed which were useful when a multiplicity of functions 
were Involved. 

Many of these descriptions and the problems associated with their selection and use also 
occur in spatial problems — that is, where the independent variables are spatial.  It is not 
intended to develop the correspondence of spatial descriptions completely — and only a few 
elementary aspects will be reviewed in this section.  Other relationships will be developed in 
later sections.  Although the exact details of these relationships are of importance, of com- 
parable significance is the understanding of the basic philosophy associated with concepts such 
as the transformation of spatial variables, and spatial sampling. 

Just as time and frequency were seen to provide equally useful methods for description, 
both space and space frequency are employed in representing spatial structure.  A spatial 
distribution may be expressed mathematically as a function of intensity and of linear position 
along a line or in a plane.   It may also be expressed mathematically as a function of inverse 
space, that is, in terms of spatial frequencies.   The relative utility of the two domains is based 
on essentially the same factors which make Fourier transformation of value for temporal 
functions.   That is, it may often be of value in order to improve visualization, or to facilitate 
computation or measurement to work in the space-freqrency domain rather than directly in the 
space domain.  Similarly, correlation analyses and sampling methods may be applied to sim- 
plify representations of spatial structural detail. 

2.   FOURIER ANALYSIS 

AMPLITUDE DISTRIBUTION;  RADIATION PATTERN 

A well-known example of the application of Fourier analysis to spatial problems involves 
the relationship between the amplitude distribution along an aperture and the angular distribu- 
tion of energy.   For antennas, the distribution along the aperture is given by the component of 
the excitation tangential to the aperture plane that produces or maintains a radiation field at an 
arbitrary point in space.  Any amplitude or aperture distribution F(x) may be represented by 
the following expression: 

F(x)   =   A cos d e (E-l) 

This represents waves traveling over the aperture and having different propagation coefficients 
along the x-axis.  The equation above represents a wave with a propagation coefficient k sin e 
which produces in the medium (propagation coefficient k) a plane wave in a direction making an 
angle 6 with the normal to the aperture plane, A is a complex number whose modulus and 
argument determine the amplitude and phase of the plane wave at the aperture, and k 
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represents the increase of phase difference per unit distance in the direction of propagation. 
Each wave of the Fourier decomposition has its own amplitude and phsse, which in general 
vary with 9, forming an angular spectrum of plane waves. 

The concept of a polar diagram implies an aperture of finite dimensions and the evaluation 
of the field at a point whose distance from the aperture is large compared to the extent of the 
aperture and the wavelength.   Under these conditions the angular spectrum is called a polar 
diagram.  It is important to note that the angular spectrum associated with an aperture distri- 
bution gives the polar diagram if this concept is applicable but retains a useful meaning even 
when it is not possible to use a polar diagram as a method of representation. 

For an aperture of width "a" having a real or complex amplitude distribution F(x), the 
radiation pattern G(s) is given by 

•■f2 i 2wx ''" e 

G(s)   =    (1  +  cos Ö)       (     F(x)  e X     dx O3"2) 
-J/i 

where 

6 = the polar angle measured from the normal to the aperture 

x = the distance along a plane parallel to the aperture 

x = the wave length 

s = -   sin d/K. 

It is assumed that the phase velocity at the aperture is equal to the velocity of propagation. 
If the beam is sufficiently narrow, the slowly varying factor 1 + cos e can be omitted and dif- 
fraction theory used to predict the radiation pattern that will be obtained with a given aperture 
excitation and aperture width.   Fourier analysis of the aperture distribution gives the position 
and strength of the component beams.  The line spectrum is an angular one,  sin 0A replacing 
the frequency variable of ordinary harmonic analysis.   The lines represent plane waves which 
would be produced if the distribution of the field over the aperture plane was periodic extending 
to infinity.  When the distribution is confined to a single period the effect is approximately that 
of forcing plane waves through a finite aperture.   The angular spectrum then becomes con- 
tinuous, and each plane wave is replaced by a diffraction pattern in the form of a main beam 
and sidelobes.   Thus, a Fourier series representation of the field is transformed into a Fourier 
integral, the aperture distribution and radiation pattern together comprising a pair of Fourier 
transforms.   If the aperture is fed in-phase, a one-dimensional aperture distribution (or ampli- 
tude distribution) and radiation pattern (or angular spectrum) may be represented as: 

G(s)   =     f   F(x) e"'2"" dx    (radiation pattern) (K-3) 

00 

F(x)   =     I   G(s) e'2"" ds       (aperture distribution). (E-4) 

If the amplitude distribution is symmetrical about the center of the aperture, F(x) is even 
and the pattern is given by the Fourier cosine transform of F(x), designated as G^s), then (E-3) 
and (E-4) becomes 

CD 

3c(s)   =     [  F(x) cos (ZTTXS) dx (E"5) 

m 

F(x)   =     [   Gc(s)  cos  (277xs) ds. (E"6) 
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If F(x) is odd, the excitation of one half is of opposite sign to that of the other half, and the 
radiation pattern will be given by the Fourier sine transform of Ffx), i.e., G3(s): 

G.(s)   =     f   F(x)   sin (2mcs) dx (E-7) 

r 
F(x)    -     I    Gs(s)  sin (277xs) ds (E-8) 

Fourier sine and cosine transform pairs are illustrated in Figures E-l, E-2, and E-3 for 
several types of amplitude distributions.   The antiphased apertures are used in "Monopulse" 
application as will be indicated in later sections. 

A given radiation pattern may be resolved into the sum of two or more radiation patterns, 
each supplying its own aperture distribution.   The resulting aperture distribution will then be 
the vector sum of the component distributions.  An elementary and useful pattern is the 
"sin x-over-x" pattern which results from a constant amplitude, in-phase distribution across 
the aperture.   This is shown in Figure E-l.   The zeros are equally spaced, except for those on 
either side of the main beam, which occupies two "spaces."   The width of one "space" is the 
reciprocal of the aperture width, since the beamwidth is inversely proportional to the width of 
the aperture. 

Two other properties of the Fourier transform which are of importance in antenna 
problems: 

(1) Delay Linear Added Phase 

F(x-a)    - G^e-'2"" 

Similar to the Fourier property in the time-frequency domain, a translation in the aperture 
distribution affects only the phase of the radiation pattern. 

(2) Complex Modulation Shift of Spectrum 

F(x)e'2'""t GCs-V). 

Multiplying an aperture distribution by exponent (il-rryx)  "delays" or displaces the radia- 
tion pattern by an amount 0O where y = - sin eo/\.   This results in having the axis of the major 
lobe of the radiation pattern at an angle of eo with respect to the normal to the aperture.  If the 
total phase variation across the aperture amounts to tmr, n being an integer, the pattern is 
displaced n spaces. 

Any number of main beams of the "sin x-over-x" patterns, if each is separated from the 
others by a whole number of spaces, may be summed without interferring with each other in 
their principal direction of radiation.   Hence, all zeros may be made to disappear by placing 
beams adjacent to each other at intervals of one space.   Therefore, for an aperture of n wave- 
lengths, a polar diagram may be constructed so as to have any chosen value in each of 2n + 1 
different directions (equally spaced) in front of the aperture. 

APERTURE  - BEAMWIDTH PRODUCT 

A relationship between the aperture distribution width and the width of the angular spec- 
trum of the radiation field is. 

As x  Aa   =    1 (E-9) 

where As  = the equivalent angular spectrum width 
Aa = the equivalent aperture distribution width. 
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Figure   E-2 - Fourier sine transforms 
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Figure   E-3 - Fourier s'ne transforms 
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This is valid provided that G2(0) t 0, where G(O) = G(s)| s.o  and is the anprilar spectrum of 
plane waves radiated from the aperture at broadside. 

Thus, an aperture-beamwidth reciprocal relationship exists for a spatial distribution, 
analogous to that for the time-frequency domain.  It has been previously shown that the radia- 
tion pattern due to a constant, in-phase, amplitude (unity) distribution over an aperture of 
width "a" is 

G(s)    =    a   sin^as (E-10) v    ' was 

Comparing this with the spectral envelope of a rectangular pulse of unit amplitude and pulse 
width T, namely, 

G(f)   =   T 5i£L!Ll£ (E-ll) 
TTTI 

shows that the aperture width "a" corresponds to the pulse width T and the direction parameter 
s corresponds to frequency  f.   To complete the analogy, replace the time variable t applying 
to the pulse by the distance x along the aperture.  If the Fourier transform relationships 
between waveform and spectrum in the time domain are: 

CD 

G(f) =    F(t) exp (-j2wft) dt  (frequency spectrum) (E-12) 
-'00 

F(t)   =      j    G(f)   exp  (+j27Tft) df     (time   function) (E-13) 

then using the above analogies, the corresponding Fourier transforms in the space domain are: 

oo 

G(s) =    F(x) exp (-j27rxs) dx (radiation pattern) (E-14) 
-■'o> 

CD 

F(x) =  j G(s) exp (+j277xs) ds  (aperture distribution). (E-15) 
-CD 

which are identical to (E-3) and (E-4). 

To determine the effect of varying the aperture width, consider the radiation pattern given 
by (E-10).   If the aperture width is increased by a factor "m", the new pattern is 

G(S)    =   ma   s.jWMnas (E_16) 
wmas 

Therefore, increasing the aperture m times has the following results: 

1. the field strength increases m times at broadside 

2. the beamwidth of the angular spectrum is reduced by l/m 

3. the beamwidth in the polar diagram decreases but not linearly since the half-power 
beamwidth depends on the arc-sine; the reduction will be linear for narrow beams where 
0 - sin e (9 < 15°).   The inverse will be obtained if the aperture width is decreased m times. 
These results are illustrated in Figure E-4. 
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©  m 
77 as 
(77Tf) 

Figure  E-4 - Reciprocal relationship between aperture and beamwidth 

TOTAL RADIATION FIELD 
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has .LTft, coaii^tioa^   The ^crease in the physical size of ^^aXÄSr arrays 
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rP<H^-tf!alfrafia^0ni.ield may be arbitrar"y «Uvided into three "regions," the Fraunhofer 
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the nature of the approximations made for establishing the functional dependence of toe fSd 
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crXarTeAXSr then the F0Urier ^^ 0f the apertUre ^^^ It Ä 

Within the Fresnel region an element contribution may be approximated bv a constant 
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ÄltlenSh üLTeT^H-   Fo,rH 
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SPATIAL SAMPLING 

Sampling theorems which were previously discussed were related io Fourier analysis. 
One of the theorems indicated that a function restricted to an upper frequency of W could be 
completely described by giving its values at a series of points spaced 1/2W apart. 

A version of spatial sampling may be stated in the following form: 

A discrete source confined within x = ± Xc, y = + Yc is completely specified by measuring 
the coherence of its field at discrete invervals at i/2Xc and   1/2 Y,,, where Xc and Yc are the 
widths of the aperture in wavelsngths along planes parallel to the x and y directions respec- 
tively.   This results in a two-dimensional radiation pattern.   (By a discrete source is meant 
one having finite: dimensions and a finite aperture distribution.) 

The above theorem gives the interval for which independent measurements are to be made. 
Measurements could be made at a finer interval.  However, the measurements at finer inter- 
vals would be deducible from measurements at the greatest interval compatible with the 
theorem, and would not be fully independent. As a result, the structural information of a field, 
contributed by a source, can be thought of being spread out over the medium and having a 
certain density, there being one independent datum per rectangular cell having the dimensions 
given above. 

The space-sampling intervals for two types of distributions are given below: 

Constant distribution, in-phase 

59' 
^1/2   =   "-/x" degrees   =    half-power beamwidth 

6a   =    .83ÖJ/2 degrees   =    space-sampling interval. 

Cosine distribution, in-phase 

94 6j/2   =    -^- degrees   =   half-power beamwidth 
a/A. 

9a   =    .61öj/2 degrees   =    space-sampling interval. 

Thus, it is seen that the space-sampling interval is related to the beamwidth of the radiation 
pattern. 

In the time-frequency relationships, it was indicated that when a sampled waveform is 
passed through a low-pass filter which transmits only the spectrum of the original signal, each 
individual delta-function (a sample) having an infinitely wide spectrum vas reduced to a sin x/x 
function, whose rectangular spectrum fits the filter pass band.  Therefore, the original signal 
is the superposition of a series of sin x/x functions spaced according to the sampling theorem 
weighted by the filtered waveform. In space, a finite aperture acts like a low-pass filter and 
results in a linear distortion of the radiation pattern as illustrated in Figure E-5.  Each sample 
of the radiation pattern when passed through a finite aperture will result in a sin x/x  shaped __ 
beam that corresponds to a direction in the radiation field.   Figure E-6 illustrates how a set of W 
sample beams can synthesize the radiation pattern. 

AUTOCORRELATION FUNCTION 

The autocorrelation function i//(x) of an amplitude distribution F(x) is given as 

>Mx') j~{ F(x) FCx + x') dx (E-17) 
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F^x) 

-I 

I    s = sin 

 L-i—•► 
+ii 

G,(») 

♦• x 

I HAGI NARY IMAGINARY 

Figure E-5 - The radiation pattern G^s) and its aperture distribution F^x) 
are shown together with the truncated aperture distribution F2(x) and its 
corresponding radiation pattern G2(s) 

t F2(x) 
G.(8) 

+ f 
Figure E-6 - A   set   of   sample   beams   which   synthesize   the   realizable beam 

pattern G2(s).     The sidelob";s of the sample beams are omitted. 

where L is the length of the line.  Similar to the time domain, the autocorrelation function at 
the origin is the mean-square-value of the amplitude distribution.  If x' is larger than the 
distance over which the value of one point in F(x) has an influence on the other, then V(x') 
approaches the square of the average value of F(x).  In two dimensions, autocorrelation func- 
tions may be used as measures of the linear coherence of two-dimensional amplitude distribu- 
tion functions and are expressed as 

«x'.y') • UK , y) FCx+x',   y+y')  dx dy (E-18) 

where A is the area of the field under consideration. 
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Correlation analysis may be used to describe the statistical properties of tiie fluctuations 
of a wave ilcid.   Previously it was showr, that the correlation function can be used to measure 
the "time constant" of a waveform.  Similarly, a "correlation distance" in the space domain 
may be used to describe the distance at which the statistical dependence between fluctuations 
vanishes.   The amplitude and phase variations in a radiation field are determined to a large 
extent by the type of background ensembles existing in the field.   These can be classified in 
many ways.   For example, an ensemble of backgrounds may be stationary - the properties do 
not vary with the direction of view, ergodic - the statistical properties of any background are 
the same as those of any other of the ensemble, or Gaussian - the properties are analogous to 
those of electrical noise generated in radiation detectors. 

The spatial autocorrelation function and its Fourier transform, the power pattern, are very 
useful for decribing Gaussian background ensembles and can be used to "optimize" linear 
spatial systems in the least mean squares sense.   For non-Gaussian ensembles, correlation 
analysis cannot completely describe the field.   Also, it cannot be used to analyze the perform- 
ance of non-linear spatial systems.   Non-Gaussianity or non-linearity infers statistical 
descriptions for complete characterization. 
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F.  ORTHOGONALITY AND INTEGRAL TRANSFORMS 

1.    INTRODUCTION 

The equations that describe physical phenomena ordinarily depend on both time and space 
coordinates.  By introducing parameters Kn called "proper values" the equations may be 
transformed to those depending on the space coordinates only.   These values, which are usually 
infinite in number, are determined from conditions which must be satisfied at certain physical 
boundaries. 

The particular form of these equations depends upon the system of coordinates used, and 
the choice of coordinates in turn depends upon the geometry of the physical system to which the 
equations apply.   The particular types of functions which satisfy the equations are known by 
names which refer to the particular geometry of the physical system.   Examples of these are 
(a) cylindrical functions, of which the Bessel functions are of the "first kind" and (b) spherical 
harmonics, also known as Legendre' Polynomials. 

The functions are referred to as the "proper functions" or "eigenfunctions" pertaining to 
the particular physical system under consideration, the simplest of them being the trigono- 
metric functions which are the proper functions for systems having a rectangular geometry. 
If a function f(x,y.») is operated upon by a linear operator L [f(x,y, z)], such that L [f(x,y,z)] 
= (constant) f(x,y>z), then the function is called an e'genfunction of the transformation, and the 
constant the corresponding eigenvalue or proper value, Kn.   These functions, in terms of the 
proper values Kn, form a set or system.   Due to the linearity of the equations, a complete 
solution may be derived by a linear superposition of a set of these proper functions with dif- 
ferent parameter values and arbitrary coefficients.   Thus, if 4>n(x,y, z) represents a proper 
function for the parameter n, the solution f(x,y, z) will have the form 

f(x,y,z)   =    a14)l +  a2<p2 +  83^3 +   ■••   +  an0n (F-l) 

which in general is an infinite series.   The coefficients an are regarded as constants of inte- 
gration which give the solution (F-l) the necessary flexibility of meeting certain boundary con- 
ditions set by the physical problem. 

In one dimension, (F-l) takes the form 

f(*)   =   £]an*nOO- (F-2) 

The problem now is to expand   f(x), an arbitrary function, in a series of weighted elementary 
proper functions in such a way that the resulting series converge.   The solution to this problem 
is usually quite complicated unless the system of proper functions or a derived system formed 
from linear combinations of these functions satisfies what are known as the conditions of 
orthogonality.   Before these conditions are given, the origin of the word orthogonality will be 
discussed. 

2.   CONDITIONS OF ORTHOGONALITY 

The word orthogonality comes originally from vector analysis where two vectors A(x,y, z) 
and B(x,y, z) are said to be orthogonal if their dot product equals zero, i.e., 

A-B   =    AXBX+  AyBy + A.B,   =   0 . (F-3) 
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Similarly, vectors in n dimensions having components A., B-, (i = 1,2,3, ... n)  are said to be 
orthogonal when 

Z]AiBi =o- (F-4) 

If a vector space has an infinite number of dimensions the components A. and B. become con- 
tinuously distributed and i is no longer a denumerable index but a continuous variable (x). If 
(x) is confined to the region  0 < x < £, the scalar product (F-4) becomes 

j  A(x) B(x ) dx (F-5) 

In this case the functions A(x) and B(x) are said to be orthogonal. The concept of orthogonality 
is indefinite unless reference is made to specific range of integration which in the present case 
is from 0 to  f. 

In general, the conditions of orthogonality for the one-dimensional case are given as 

rn        for     m =   n 

0 for    m  f n 
W(x) «„(x)  0n(x) dx   = (F-6) 

where W(x) is a fixed function of the independent variable which is usually taken equal to unity 
when representing signals, and a and b are the finite limits of the region over which the func- 
tion f(x) is specified.   To obtain the coefficients, multiply (F-2) by W(x)^n(x) and integrate 
from x = a to  x = b, 

b CD b 

j   W(x)    f(x)   0m(x)   dx    =    2^   "n j   *(*)   *m(x)   *n(x)   dx (F-Tj 

Since the ^>'s are orthogonal, from (F-6), all terms on the right of (F-7) vanish except one 
so that 

Solving for an, 

b b 

f   W(x)   f(x)  *B(x) dx   =    «„ j   W(x) [Vx)]2 dx (F-8) 

p 
f   W(x)   f(x) ^m(x)  dx 

b 

J   W(x) [0m(x)]2dx 
(F-9) 

Since an orthogonal function </>„,( x) may be multiplied by an arbitrary constant, the quantity rn 

can be made equal to unity.   The resulting functions 0n(x) are then referred to as a normalized 
set, the denominator of (F-9) becomes unity and the coefficients for (F-2) are 

an   -   j   W(x)   f(x)  0n(x) dx 

which represents the desired solution to the problem stated earlier. 

(F-10) 
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3.   INTEGHAL SQUARE  ERROR 

The question now arises under what circumstances it is possible to express an arbitrary 
signal f(x) by an infinite sequence of orthogoual functions <£n(x), 

t(x)  =  £ an 0n(x) . (F-ll) 

In order to use a representation such as (F-ll), it is necessary to either restrict f(x) or settle 
for something less than an exact identity in the representation. 

A satisfactory way of specifying the near equality of f(x) and tie sum is through an integral 
of the magnitude of the difference squared: 

b 

J   W(x) f(x) -   £   an 0n(x) dx   =   e. (F-12) 

If the an can be so chosen that the integral (F-12) vanishes for a given function, then the repre- 
sentation (F-H) is said to be complete. 

The use of a criterion of this type to evaluate the effectiveness of a representation is 
arbitrary.   The odd powers cannot be used for then e has no mmimum and although any even 
power could serve the purpose, the evaluation of the coefficients would become very com- 
plicated.  Too, a power law greater than the square law would tend to suppress very large 
errors at the expense of smaller errors to a greater extent than the square law.  The latter 
treats all errors more equally and, as will soon be seen, lends itself to the concept of orthog- 
onality. 

To find the coefficients which minimize  c, expand (F-12), that is. 

b 

X) f(x) 
5 v-    r « * dx "  2   L   an I    *(*)   *(*) 0n(x) dx +   J]     am al   W(x)  ^(x) </.n(x)  dx.    (F- 

•"             •                                                          m.n'-N J« 

If 4>n(x) is orthogonal and normalized so that 

b 

j   W(x) 0m(x) 4>n(x) dx   =   0 m t n 

13) 

(F-14) 

then (F-13) becomes 

b 

= 1 W(x) f(x) 
2 .i 

dx -   2 L   an    [  W{x)   f(x) 0n(x) dx +   21 

which, from (F-10), reduces to 

b 

=   [   V(x) f(x) dx-   £ 

(F-15) 

(F-16) 

Thus, if the <t>n are orthonormal functions the error becomes a minimum and as N becomes 
infinite, (F-16) results in Parseval's theorem.  In general, the theorem states that if an arbi- 
trary function is expressed as an infinite weighted sum of orthogonal functions, then the 
"energy" of the function is equal to the sum of the "energy" of each of the orthogonal components. 
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When (F-ll) is not exactly an equality, (F~16) suggests that the orthogonal function method of 
finding the coefficients leads to the minimum value for the integral of the square of the dis- 
crepancy. 

4.   INTEGRAL TRANSFORMS 

If the function  f(t) is defined by an ordinary or partial difference, differential, or integral 
equation and certain boundary conditions, it is found simpler In certain circumstances to 
translate the boundary value problem for f(t) into one for the function. 

F(s) 
'a 

=   j      f(t) K(s,t) dt (F-17) 

where F(s) is called the integral transform of f(t), X(s,t) the kernel function, and s the 
image variable.   From (F-17), an integral transformation of a function  f(t) is obtained by: 

(1) Multiplying f(t) by a function of two variables. 

(2) Integrating over a definite range of the original independent variable so that the 
transformation is a function of the image variable only. 

The integral transformation is orthogonal for it satisfies the conditions of orthogonality and 
consequently may be evaluated by the integral-square-error criterion for completeness. It 
provides a one-to-one transformation with the function being transformed. 

The kernel function determines the type of integral transformation made and the appli- 
cability of the transform to particular systems. There is a great variety of functions which 
may be used as kernels.   Three general categories are: 

(1) Product kernels — the original and image variables occur as a product st. 

(2) Sum or difference kernels — the original and image variables occur as a sum or dif- 
ference s ± t. 

(3) Types in which the original and image variables do not occur in a combination that can 
be replaced by a single variable. 

In a transformation, the independent physical variable (such as time t, distance x, tem- 
perature T, etc.) is replaced by an abstract mathematical variable called the image variable 
(usually represented as s, p, or j OJ) and the dependent physical variable is then replaced by 
an abstract function called the transform.  Physical significance has been attached to these 
abstract variables, the extent of which depends on their utility. 

In order to obtain the unknown function from its transform it is necessary to invert or 
solve the Integral equation (F-17).   The general method of inversion is by an inversion integral 
of the form 

»2 

f(t)   =   J    k(t,s) F(s) ds. (F-18) 

The inversion integral must have this general form since: 

1. It must contain the transform of the unknown function, F(s). 
2. It must have a kernel function of s and t in order that the integral be a function of t. 
3. It must h?ive definite limits so that it is not a function of s. 



The transform integral and the inversion integral together constitute an integral  equation 
pair. 

One procedare for producing integral equation pairs is through the use of spectral theory. 
The technique involved is that the functi-a f(t) is expanded in terms of a set of discrete func- 
tio 3 k (t) that possess an orthogonality property, where n has a different integer value for 
each member of the set.  Such sets of functions are called elgenfunctions or spectral functions. 
The expansion is 

Ht) = I>n(t)fn (F-19) 
n 

where f  , the coefficient of kn(t) in the expansion, is the amount of each spectral function 
which must be present in order that the superposition add up to the given function,   t(t).   The 
set of coefficients  f   is called the spectrum of f(t) with respect to the: set of spectral func- 
tions in terms of which f(t) is resolved.  Since the set of spectral functions is discrete, the 
spectrum is called a discrete spectrum. 

When the number of terms in the spectrum required to give a good approximation of the 
function being resolved is small, the summing process can be performed.   However, if the 
number of terms needed for a good approximation are large, it is convenient to convert the 
sum to an integral.  Therefore, the above becomes 

f(t)  =   |kn(t) dfn (F-20) 

As the number of spectral terms required for an adequate representation increases indefinitely 
they form a denser set of spectral lines and in the limit become a continuous spectrum.  In this 
process, the discrete variable n may be replaced by a continuous variable s and the discrete 
set of spectral functions kn(t) may be represented as a continuous set of spectral functions 
k(t, s).  Therefore, (F-20) becomes: 

f(t)  =    [k(t.s) dfs. (F-21) 

But df „ can be represonted as a derivative in spectral space: 

df. (F-22) 
df. = -drds 

where df Vds is the spectral intensity or amplitude density in spectral space and is called the 
continuous spectrum of f(t) with respect to the spectral or kernel function k(t,s).  The spec- 
tral intensity of a function is represented as F(s) so that (F-21) can be put in conventional 
form as 

f' . (F-18) f(t)  =   I    k(t,s) F(s) ds 
•i 

which is the inversion integral. 

In order to obtain an expansion of  f(t) in terms of a discrete or continuous set of spectral 
functions, it is necessary to determine the spectral amplitude   fn or the spectral intensity F(s). 
For the coefficients  f   to be obtained easily, the set of spectral functions must have the prop- 
erty of orthogonality. "The concept of a transformation, therefore, hinges on expressing an 
arbitrary function with a series of suitable functions which possess the property of orthog- 
onality. 

A complete transformation involves three operations.   These are: 

(1) Make transformation 
(2) Obtain solution in transformed domain 
(3) Perform inverse transformation. 
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The first operation characterizes the transformation and the problem to which it is being 
applied.   The transformation made must serve the purpose of matching the source of the prob- 
lem to its application.   For instance, when dealing with numbers, "number" transforms such as 
logarithms are used, whereas with functions, "function" transforms such as the Fourier, Laplace, 
Mellin, Hankel, and Z transforms are employed.   The type of kernel the transform has  deter- 
mines the function or system to which it may be applied.   The second and third operations pro- 
vide the reduction of mathematical complexity or improved visualization of the problem. 

Table F-l lists differential, integral, and difference equations which are of importance in 
many physical applications and which relate the response of a linear element to its excitation. 
The type of transform best suited for each equation and the results obtained through its use is 
also given.  It is seen that the Laplace transform is effective in reducing an nth order dif- 
ferential equation with mth degree polynomial coefficients to one of reduced order in the 
transform domain where it is assumed that n is greater than m.   The Laplace transform, 
however, is usually used to solve a linear constant coefficient differential equation or integral 
equation of the Volterra type.  Both become algebraic in the transformation.   It is also used to 
aid solving linear time-variant systems where the time-varying parameter is a function of the 
first power of  (t).  In this case a first-order differential equation in the transformed domain 
is obtained.   In general, the Laplace transform enables the steady state solution, the transient 
solution and all initial conditions to be treated in one single operation.   This is in contrast to 
the classical method of solving for the source-free and forced solutions individually, summing 
them to give the general solution, and evaluating the constants of integration from the initial 
conditions. 

The Mellin arid Hankel transforms lend themselves to solving problems concerning time- 
varying linear systems.  In particular, the Hankel transform is used to solve Bessel-type 
differential equations since its kernel is a Bessel-function.   The Mellin transform is applied 
successfully to systems characterized by an Euler-Cauchy differential equation or Fredholm 
integral equation reducing both to algebraic form in the conjugate domain.  A Hankel transform 
pair is symmetric and thus only one table is necessary for the direct and inverse transforma- 
tions.   That is, the same column can represent either the function or its transform.   This is 
not true of the Laplace or Mellin transforms since the transform variable is complex and the 
inverse transform is obtained by performing a complex integration. 

The Z transform is used to solve linear difference equations.   The difference equation 
applies to a discrete signal system and is analogous to differential and integral equations which 
correspond to continuous signal systems.   The Z transform may be used to express discrete 
"signals" in terms of sums of geometric sequences just as the Fourier series or integral 
expresses continuous "signals." 

Many operations encountered in information processing may be expressed by Laplace, 
Mellin. and Hankel transforms.  The Laplace transform has perhaps been developed more 
fully because of its relatively simplicity for the operations shown on Table F-2.  The Mellin 
transform is appropriate for multiplication, differentiation, and convolution in the time domain 
while the Hankel transform is suitable for scale changes (compression or expansion) and for 
first order differentiation.  It Is important to note that a linear addition in one domain goes 
over as a linear addition in the conjugate domain for all three transforms, since all integral 
transforms are derivable from the superposition integral. 
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TABLE F-l 
Effectiveness of Transforms for Solving Several Linear Differential, Integral, 

and Difference Equations Describing System Behavior 

-f(t). Jnput. 
LI NEAR 

ELEMENT 
 output .y(t)- 

.1inear 
fdiffersntian 

<      integral     f-   equatio 
t. difference J 

Equations Describing Systsn Behavior 

Elffarentlel 

Integral 

Equations of Each Class 

I.   nth order differential   equation 
with sith degree polynoialal   co- 
efficients: 

£l>'^'"" - 
2.   Eul«r-Cauehy dirfflrtntla) 

equatlor; 

Z—J  ■      dt" 

3.   The Betael  dtffarsntiil 
equation: 

■t.   Diffar»ntia1  equation Mhera tha 
tiaw-varying paranatar  ia a 
function of tho flrat powor of 
t. 

EiiMpte:   The Laguerra 
aquation 

t^MM)^ 4  ny =   f(t) 

y(o) =1,     n = 0 or an   Integer 

I. The VoUorra integral aquation 
of the second kind with a dif- 
ference kernel: 

[  kft-r) y» dr ► y(t)   =   f(t) 

Solution Using Trsnsfonur 

HQ) - f ftUa-»* . 

F(s) «f   f(t) t»-1dt 

f.(< W   =| tJJcrt)  f(t)  dt 

Laplace 

F(P)   =   [ H t) e^'dt 

F(-,T.r/,(t,|e-..dt 

2. The Fredhol« Integral equation 
of the flrat type with a prod- 
uct kernet: 

(k(t T),{T)&r*  f(t) 

Linear difference equation: 

■v.* Ve-»* at»«-a+ ••• 

\K(.)J   J.\k(t: 
t""1 dt 

Result of Tr-insvonnation 

4__IZ_-J dpr **-?        dtf L,. 
k-o r«o t"l I1" 

F(P) 

Ait  »th order differential   equation having nth degree poly- 
nonial  coefficient».     For the tpaclel caae of conatant co- 
efficient« (r = 0).   the above  raducea to an algebraic 
equetiona 

Y(s) 
F(s) 

T  «.(-l)" s(a*l)  (st2)... (stn*l) 
a^e 

(Algebraic) 

»,W W 
(±1)" (a1 t cr2)» 

(Algebraic) 

The tranefor« equation  ia a new dlfferentlel  equation of 
reduced order (1).    For the «pedal  caae of f(t) - 0»  Y^p) 
ia solved as: 

'<" - ^ 

«hlch  Is the Laplace transfons of the Laguerre polynoial 

L.(') ■ irr •' ^ (t" •"*' 

(Algebraic) 

■hlch  Is an algebraic equation.     Once «(t)  Is obtained by 
Inversion,   y(t)  can bo obtained  fro« the fol lowing rel ition 

y(t) = (i) 

F(l) = T,   f(nT) •-' 
l»"0 

T a sanplIng  Interval 

»(l) 

F(')   f. ß, «- 

«hlch  la clearly algebreic.     Calculating »(i).   the response 

y,, at tiaa tn - nT  is 

». . ,(t.) = Y(I)I" 
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G.   LINEAR ANALYSIS OF CIRCUIT  ELEMENTS 

1.    INTRODUCTION 

The behavior of linear elements can be described by integro-differential equations involv- 
ing the input and output.   Such equations relate the output to the input and formulate the basic 
relationship between "cause and effect," the exact nature of which depends upon the specific 
element.   When the element is linear, the integro-differential equation will be of the form 

.n-l 

dt dt 

bv(t) ^^ + b^t) ^   ^ +••■ +Jj^ibpCt) c(t)dt1-"dtp + ---+ b0(t)c(t) 
p-fold dt dt 

where c(t)  is the driving function and r(t)   is the output.   The linearity is due to the fact that 
the dependent variable and its derivatives and integrals, are of the first power and are com- 
bined in a linear equation. 

The basic property of linear elements is that of linear superposition.   It is important to 
recognize that linearity does not require that coefficients of the integro-differential equation 
be constants but that their values be independent of either the input or output.   If the coeffi- 
cients are constant, the element is linear time-invariant and has the property that when an 
element's response to a given function is known, the response to the derivative, or integral of 
the input function may be found by differentiating, or integrating the original response.   If the 
coeffici^....» are independent functions of time, the element is linear time-variant and the anal- 
ysis is more complex.   Sections G-l to G-ll will be concerned with the characterization of 
linear time-invariant elements, and in section G-12, the analysis is extended to include linear 
time-varying elements.   The reason for discussing linear elements is that most elements can 
be considered to be linear at least over some operating range.   The nonlinearities may then be 
in terms of second order perturbation effects. 

2.   LINEAR SUPERPOSITION 

The concept of linear superposition plays an extremely important role in element analysis 
and synthesis.   A basic aspect of the superposition principle is the classical method of obtain- 
ing the complete solution of a linear differential equation.   This is performed by taking the sum 
of the free solution (transient response) and of the forced solution (steady-state response) 
where the initial conditions are used to evaluate the constants of integration.   This technique 
may be extended by resolving any general source function into component functions for which 
the solutions can be found more readily. 

A useful form of the superposition theorem utilizes the response of an element to a step 
source function.   If a general source function c(t) is resolved into step source components as 
is illustrated in Figure (G-l),then the response r(t) of an element to this excitation may be 
given in terms of its normalized response A(t) to a step source, defined as 

response    to   step  source ,_,   _. 
A(t)   =    ——: —  (G-2) magnitude of   step  source 

94 
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Figure   G-l - Resolution of general source function 
into step source components 

If c(t)  is a continuous function of time t from o < t < »   and its step source components are 
increased without bound, then the summation of the responses to these components may be 
approximated by an integral: 

, dc(t) 
r(t)   =   A(t) c(o+) +     |    A(t-T)  -^ 

T» t 

1   A(> dr (0-3) 

This is often referred to as the Duhamel integral or superposition integral.   If the excitation 
c(t) has finite discontinuities as in Figure (G-l) at t = T, then the integral in (G-3) must be 
separated into those parts where c(t)  is continuous over the limits of integration and a 
response term to distinguish the finite discontinuity.   Therefore, if t > T, then 

T« t 

r(t)   =   A(t) c(o+) +    ]    A(t-T) dc(t) 
dt 

dr 

T"t>T 

+ A(t-T) [c{T+) - c(T-)]  +       [    A(t T) 
dc(t) 

dt 
dr 

Equation (G-3) may also be expressed as: 

T"t 

r(t)   =   ^    ]    A(t-T)  C(T) dr 

(G-4) 

(G-5) 

This form may prove more useful depending on the complexity of the derivative of c(t) and of 
the integral. 

Thus, if the response of an element to a step source is known, then its response to an 
arbitrary source function can be deduced from this information.   In general, any linear cause 
and effect relationship involving a single independent variable can be expressed in the form of 
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a modified superposition theorem such as (G-3) or (G-5).   An indication of the importance of 
thrsuperposiUonPintegral is that all integral transforms may be delved from it. 

3.    TRANSFER FUNCTION 

may be described by steady-state transmission properties, for example. 

H(ia.)   =   e*^ em^ (G-6) 

where  Hi*) - log |H(j*)|   is the gain, and Bd«) - angle HCJc)   is the phase. 

r^^ ^Ä'Ä cSr'^SÄ. .or sue an a^.y.is is U,, tollo«^: 

(1) Determine the differential equation relating output to input. 

(2) Substitute the algebraic term  (Jo,) for the operation d/dt. (io.)2 for d2/dt2,  l/i* for 

fdt, i/(j«)2  for //(dt)   . 

(3) Solve the resultant equation for the ratio of output to input as a function of radian fre- 

quency «. 
(4) Convert the ratio from complex form to magnitude-phase form and plot the results. 

If the input is a periodic time function f .(O  whose Fourier series converges, then 

ca 

f.(t) = T] ^J""«) 
e jn^.t T  = — (G-8) 

n"- • 

where T  is the fundamental period, and toe complex coefficients D(Jr-0>   are given by 

T/2 
1 f m'inü'ot 

D(jn^)    =   f    J       fi(t)   e dt 
(G-9) 

-T/2 

From the definition of the transfer function H(j.), the system output in response to the nth 
input component is 

fo (*)   =   Ddn'O "(i^o1) exp (Jn^o*)- 'G"1 
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H(into
0) > the phafäe of the element at this frequency.   Since the system is linear, its total 

response to   ^(t) is the sum of the component outputs f0 (t)  and may be represented by 

f0(t)   =    2_,   Dnnw0)  H(jn^0)  exp (jn<u0t) . (G-H) 

This is the steady-state output of a linear, constant-coefficient element when its input is a 
periodic function rf time as given by (G-8). 

From Fourier analysis, a knowledge of H( jw) for all frequencies determines the transient 
as well as the steady-state properties of linear filters.   If fjCt)   is a transient having a Fourier 
transform F^jw), then the Fourier transform of the output of a linear, stationary device in 
response to the transient input in equal to the Fourier transform of the input times the trans- 
fer function, i.e., 

Fo(j«0   =   FjCJa.) H(M . (G-12) 

4.   IMPULSE RESPONSE 

Another characterization of an element is in terms of time functions.   A very useful and 
important time function is the unit impulse  S( t) defined by the relations 

8(t-T)   =   0 t t T (G-13) 

j    S(t-T) dt   =    1 e > 0 . (G-14) 
T- € 

Equation (G-13) indicates that   8(t-T)  is zero everywhere except at t = T  while (G-14) requires 
that the impulse function have unit area.   The Fourier spectrum of this input is 

T + t 

FiO") J    S(t)  e"'"' dt   =    1. (G-15) 

Thus, the spectrum of the unit impulse has unit amplitude and zero phase for all frequencies. 
It is interesting to note that the energy contained in a unit impulse in any frequency band 
Oj < a; < CJ2 is proportional to the bandwidth, i.e., 

"2 "'2 

j    iFiCo))!2 do)   =    J   da  =   <u2 - «^ . (G-18) 
"1 

The energy of the frequency components in a unit impulse is therefore concentrated at the 
extremely high frequencies. 

By substituting (G-15) in (G-12) 

F0(ja.)   =    l-HCJo))   =   H(j^). (G-17) 

Thus, the Fourier spectrum of the output of an element when a unit impulse is applied is the 
transfer function of the element.   The output   f0(t) is expressed as 

OD CD 

fo(t)   =    h   \   Yo(^  e'Ut  ^   =    h   \   a<W   e"**  dt- (G-18) 



^rÄrÄ^Ä^ 
H(j«)    =     j    h(t)  e 

Ja,tdt. (G-19) 

5.    CONVOLUTION THEOREM 

Sff/TÄ« ««"" »c^SnSUsW»^ (0-.). - roucs: 

0 

The derivative operatov has «•n.rou^J^ ^ ÄÄ^Ä"«^ »"^ 
iavariant eletoents the response to the ^«'v»''" " *" ^p"    function is an impulse, the 

Ä^tS^to^oÄÄ^Ä;^ÄÄ^ 
t 

r(t)   =    {   h(t-T) C(T) dr. (G-20) 

This rolattohship is veterrea to "^^^VÄ^'^Ä^«^»"^"* 
the input (nnction hy a series of »•«»?» Sf" fVlnm amilvsis and contains the condition lor AAAAVa'ssrArrsrA^ *-. ** »*** - -^ ^ 
(0-20). 

6, TRANSFER FUNCTION METHOD 

in referring to elements as being linear, it ^^Jf^^ ^X^T^\fneM 
proplrSs"? a^signal to which the/lementcan respond ^ ^^SherenJ and "in- 
In tiie basis of amplitude, or ^^^o^ieme^hich respond linearly to the amplitude and 
ÄTn^ o^: i^rrespeÄ? ÄftSis may a^so be applied to circuit elements. 

When an element is coherent, having a t-nsjer function H{i.)   then by applying Four.er 
analysis the frequency spectrum of the output F0( H) can be given 

(G-12) 
F0(ja))   =   H(jü)) F^jo)) 

^re ,,<« i.fte ^^ T^'^^ZL^'Z^^^^^r 
SfrÄÄÄTtoÄ fs-SaTori-ion Integra, is replacedh, a „uitlplica- 
tion process. 
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For a stable linear incoherent system the following relationship between input (stochastic) 
and output holds: 

\F0(ia>)\2   =     iHCJc)!2   iFjUoOi2 (G-21) 

This states that the power spectrum of the output of an incoherent element is equal to the 
power spectrum of the input times the square of the magnitude of the transfer functior.   An 
incoherent element is insensitive to phase information and behaves as an envelope detector. 
A relationship such as (G-21) will exist whenever the input is random noise. 

7.   USE OF RANDOM NOISE IN DETERMINING TRANSFER  FUNCTIONS 

If x(t), a typical member of an ergodic ensemble, is the input to a fixed-parameter stable 
linear system, then the output y(t) will also be a typical member of an ergodic ensemble.   The 
cross-correlation function "/^(T) between input and output is 

"M7-)  =   limit W \   «(t) y(t+T) dt . (G-22) 
T -» CD j'T 

The output may also be expressed by the convolution theorem 

00 

y(t)   =    j    h(/3)  x(t-/3) d/3. (G-23) 
o 

Substituting (G-23) in (G-22) and changing the order of integration: 

00 

^y(T)   =    J    h(/3) 0„(T-^) d/8 (G-24) 
0 

where 0XX is the autocorrelation function of the input. Equation (G-24) is a fundamental equa- 
tion for any linear transmission system whose input is a typical function of an ergodic ensem- 
ble.   Taking the Fourier transform of (G-24) 

Wxy(f)   =  H(j*) Vxx({) (G-25) 

H(i.)   =   1^1 . (G-26) 

Thus, the transfer function is equal to the ratio of the cross-power spectrum betweesi input and 
output to the power spectrum of the input. Since Wxx(f) is real, the phase of H( jw) is the same 
as that of «„/f) for all frequencies. 

For the special case of white noise, the power spectrum is a constant 

Wxx(f)   =   N0. (G-27) 

The transfer function H(iu)  and impulse response h(T) then simplify to 

H(j&))   =   *j£2 (G-28) 
O 

h(r)   =   ^2 . (G-29) 
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8.    APPLICATIONS OF  FOURIER ANALYSIS 

Fourier analysis is most useful in expressing the transmission properties of linear time- 
invariant elements.   This is attributed to the fact that a Fourier frequency decompositionis 
insensitive to translations in time (only the phase of the Fourier spectrum is modified).   It 
has been previously shown that Fourier analysis can be extended to nonrepetitive as well as 
repetitive signals and consequently has many applications in element design.   Some ot tnese are. 

(a) To predict the element's response, 

(b) To determine the element's dynamic specifications, 

(c) To evaluate or interpret test results. 

In determining the output of an element for a given input, it is desirable to know its 
response to a sinusoid.  If the transfer function is H( jo,) and a sine wave of angular frequency o>0 

and amplitude  (E)  is applied to the input, the output will also be a sine wave of frequency y, 
having an amplitude |H(jcOl • E  with its phase advanced by the angle of h(io>o).   By resolving 
an arbitrary input into its harmonic components, each a sinusoidal wave of different frequency, 
the corresponding outputs may be determined.   For a linear element, the resultant response is 
the complex addition of these outputs.   This method is illustratad in Figure (G-2) for a square- 
wave input and a given element. 

EQUALS 

D VvAAA/VW^ 
E      ./V/WA/VX/VWAA/*  / 

»   c 

vwwm 
tOUALS 

Figure G-2 - Fourier analysis to predict 
element   response 

To determine the gain and phase characteristics of an element which are necessary to 
produce a desired output for a given input, the input and output waveforms are resolved into 
their respective Fourier components and compared at corresponding frequencies.   This pro- 
vides amplitude and phase information, two sets of requirements wWch the element must 
satisfy    When tlw decomposition yields harmonic components at different frequencies, the 
element is nonlinear.   Figure (G-3) illustrates the procedure where reference time t0 is 
needed to determine phase requirements. 

The prereding method may also be used to determine the gain and phase characteristics 
of an unknown element from known test results. It should be recognized, however, that in so 
doing it is assumed that the element is linear. 



101 

mmmr - 
Figure G-3 - Fourier analysis to determine 

element's   dynamic specifications 

TIME   (SCCONDS) 

In making a Fourier analysis, it is necessary 
to interrelate the time and frequency domains, 
since the effects of errors made in one domain 
must be known in the transform domain.   Repre- 
sentations in time and frequency for a square 
wave are shown in Figure (G-4),   The discussion 
of linear superposition in section (G-2) showed 
that an element's response to a step input may be 
used to determine the output waveshape for an 
arbitrary input.   Practically, this cannot be done 
since a step function has many significant har- 
monic components.   Consequently, the output can- 
not be easily calculated unless an approximation 
is made.   Comparing Figures (G-5.a) and (G-S.b), 
it is seen that the step response is the same as the 
first half-cycle of the output response to a dis- 
placed square-wave input.   Therefore, the readily 
calculated response of Figure (G-5.a) gives the 
desired response of Figure (G-5.b) during the first 
t0  seconds.   This technique is used to find the 
step response of any system whose transfer func- 
tion is given.   The validity of the results and 
facility of calculation will depend on the period 
chosen for the square wave.   If too short, as in 
Figure (G-5.c), the output will never reach steady- 

state and if too long, as in Figure (G-5.d), there will be an unnecessarily large number of har- 
monic components to calculate.   A suitable frequency for the square-wave cycle is about one 
eighth the cut-off frequency of the transfer function.   The fundamental and the odd harmonics 
up to the twenty-fifth should be calculated for a reasonable approximation, making fourteen 
harmonic terms in all. 

s1* » III 

o i 
_Li_ 

T   T 

1     I m -3lT5V7 

FREQUENCY (CYCLES PER SECOND) 

Figure G-4 - Harmonic components 
of a displaced square wave 

To determine ti e steady-state response of an element from the transient response, it is 
assumed the element oehaves linearly throughout the transient response test.   The test data 
should be known with sufficient accuracy since small changes in the transient response may 
be equivalent to larger changes in the frequency response.   The procedure consists of first 
replacing the step input with a train of pulses of equal amplitude.   Then the response to the 
pulses will be the same as for the step for the duration of the pulse.   At this time, the input 
and output waveforms are assumed to return to zero in the same manner as they originated 
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(a) i n- ELEMENT 

 I 
I, 

(b) r 
(c) nnni> M/L 

(dl \irx-ii 
Figure G-5 - Determining transient response 

fiom  frequency response 

(a) 

INPUT 

ELEMENT 
/Vv^—- 

^  t2 

(b) ELEMENT 

l!       t2      tj       t. 
mx 
l, 12       i-3        t4 

Figure G-6 - Determining frequency response 
from transient response 

and are repeated in alternate inversions in equal time periods.   This is illustrated in Figure 
(G-6).   The transfer function is determined using the method described earlier and illustrated 
in Figure (G-3). 

9.   GENERAL CONDITIONS FOR PHYSICAL REALIZABILITY AND STABILITY 

Criteria for physical realizability can be given in terms of either the impulse response 
h( t)   or the transfer function H( Jo.).   Specifying one implicitly defines toe other since they are 
related through the Fourier transform. 

Use of the impulse response involves the following requirements: 
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(1) h(t) must be zero for   t < o, 

(2) h(t) must approach zero (with reasonable rapidity) as t approaches ♦<», 

The first condition states that a network cannot respond to an impulse before the impulse 
arrives, while the second implies that the effect of an impulse will eventually die out.   The 
latter thus ensures the correlation introduced by a realizable element to be of finite range so 
that if the input to such an element was ergodic, the ouiput would also be an ergodic function. 
These conditions are sufficient as well as necessary for physical realizability.   Sufficiency is 
used in the sense that any impulsive response h(t)  satisfying both conditions can be approxi- 
mated as closely as desired with a passive linear network, used with an ideal amplifier. 

In terms of the frequency response, the principal conditions for physical realizability are 
referred to H( JOJ), considered as a function of the complex variable a,.  H(j<i))  must: 

(1) be an analytic function in the half-plane defined by Im(a)) < o, 

(2) behave on the real frequency axis such that 

log  |H(j(a)| 
da 

J 1    +    0 o 

is a finite number. 

The first condition establishes stability, that is, the element must not be capable of an oscilla- 
tion that builds up in time.   The second condition specifies the requirement for the amplitude 
function. 

If H(üj)  is a transfer function satisfying both conditions, then for a given gain function 
A(a)) = log |H(&)) I  there is a minimum possible phase characte-istic.   For a network of the 
minimum phase type, H(^)  has neither zeros nor poles in the half plane defined by Ira(a)) < 0. 
The phase B(&;0)   at the frequency  (aj0/2w)   is given by 

2%  f   A(u) - A^) 
Bf'-o)  =   — J    -2 r- d«- (G-30) 

0 u     -   Oi 
o 

If the derivative of the gain function is easier to work with than the gain function itself, then 
(G-30} may be expressed as 

B(-o)   =   F J   s£ ^ doj «fc». (G-31) 

A minimum phase element has the important property that its inverse, with the transfer func- 
tion H"1^), is also physically realizable.   A signal passed through a minimum phase element 
H(ii))   may be recovered by passing its output through an inverse element H-1(&)) without incur- 
ring a time delay.  If a signal is transmitted through a nonminimum phase element, the best 
that can be done is to provide an element having the properties of the theoretical inverse except 
for a phase lag.   Thus, there is no physically realizable exact inverse for a nonminimum phase 
element and a signal passed through it can be recovered only after a delay.   Both types of ele- 
ments, including the inverse of the minimum phase network, are illustrated in Figure (G-7). 

All physically realizable impulse responses and transfer functions may be approximated 
with desired accuracy with passive lumped linear networks and i(Jeal active elements.   A pas- 
sive linear network, when defined in terms of time and energy, is restricted by the following 
conditions: 

(1)   it is linear. 
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(2)   the total energy at the network is positive, 

(3)  there is no response between any pair of terminals before an excitation is fed to the 

network. 

(1) Ü» transfer action, »e expressed as r«ios 0< polyomlals o<  I* (or .) with rest 

coefficients, 

(2) the numerator polynomial cannot be of higher degree than the denominator, 

(3) the denominator polynomial can have roots in the left half-plane only. 
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10.    SHORT-TIME  AUTOCORRELATION FUNCTION AND  POWER SPECTRUM 

Ordinarily, the representations of autocorrelation functions show the averaging process 
over an infinite length of time.   This implies, for example, that in the frequency domain, the 
passband of the filter with which the power spectrum is measured should be infinitely narrow. 
Both requirements are, of course, not realizable.   The autocorrelation function and its cor- 
responding power spectrum, when determined experimentally, are both inherently time depend- 
ent and consequently are approximations.   For some applications it may be necessary to rep- 
resent the correlation function or power spectrum in terms which correspond more closely to 
the conditions under which they have Been determined experimentally. 

Wiener's theorem relating the power spectrum to the autocorrelation function may be 
derived for finite time constants.   The first step.involves establishing physically realizable 
measuring procedures in terms of mathematical operations.   The measurement of the short- 
time autocorrelation function may be defined by the'following operations: 

(a) The input function   f(t) is delayed by a time T, yielding the function  f(t-T) , 

(b) Multiplication of  f(t) by f( t - T) , yielding the product function 

</v(t)   =   f(t) f(t+T) (G-32) 

(c) The function \pT(t)  is averaged by means of a lowpass filter having a transfer function 

H(jw)   =   , ^  ■,  /, v (G-33) 1  +   j(,aj/2a) 

where co is the angular frequency.   The output of the filter yields a point of the short-time 
autocorrelatio.    anction and may be expressed, using the convolution integral, as a weighted 
average of the whole past of the function ^(t), i.e.. 

■M1")  =    j   'M«) h(t-x) dx (G-34.a) 

=    2a   (   0T(x)  e"2^4"50 dx. (G-34.b) 

The weighting function i& ehe impulse response of the low-pass filter, and is illustrated in 
Figure (G-8(a)). 

The measurement of the short-time power spectrum is defined by the following operations: 

(a) The input function  f(t)  is passed through a bandpass filter having the transfer function, 

„.,.   , (2a)1/2 (/3 +j~) HO")  .  (G-35) 
(ß +   ja,)2   +  v* 

where o>0 is the natural frequency of oscillation of the filter, and ß is the damping constant. 
Let the output of the filter be g^(t). 

(b) The input function   f(t) is passed through another bandpass filter with the transfer 
function 

(2a) 1/2 % 

"^ = 771 ■ ^T1 " (G-36) (p +  jai)    + öJ 



106 

(•) 

r 
0T(t) 

L 

R 
-VwV- 

2a = 

1 
A 

RC 

(b) 

f(t) 

-wv- 

"»    .:<t) 

—* 
«:(t) 

(«i +««) 
(R, + R.) C 

u
2 = ± 
• LC 

Fieure G-8 - Networks yielding the transfer functions necessary 
for obtaining the short-time (a) autocorrelation function, and 
(b) pover spectrum 

The output of this second filter is designated as g;(t). 

(c)  The outputs of the two filters are squared and added to yield a point of the short-time 
power spectrum 

«t(") = [B:(t)]2 + [«cd)]' (G-37) 

The transfer functions given in (G-35) and (G-36) may be realized by the network of Figure 
(G-8(b)). 

The short-time autocorrelation function ^(r)  is related to the short-time power spec- 
trum  Wt(a)) by 

o|T | 

t(T)     =     S-^J-     f     «»(">   COS   ^   ^ (G-38) 
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and 

Wt(a)   -     j    ipt(T)  e   a  T    cos air AT fG-39) 
- to 

00 

J_  f   u   .   . 2a 
"   *" J   Ht(z) ^Tl^TTa d2 (G-40) 

where 

Ht(<:,J)    =     1    l/'t(T)  cos 'dT dr 

2a f      .a ITI 
; 2   -     I    e cos a>r dr . 

(G-41) 

(G-42) 

Equation  G-41) indicates that Kt(a,)  is the Fourier transform of the short-time autocorrela- 
tion function 0t(r).   Since wt(.) is a weighted average of H^). it seems to Tndicate tto  f 

Snrtfn^6 ^ *\Z ™ U8ed in ^^ types of measurement, the short-time autocorrelaS 
function will provide more accurate information about the power spectrum than the direct 
de ermination of the power spectrum by means of filters.   The validity of tte pair of rectoro- 
^Jl0118 ex^esfe^y (G-38) and (G-39) is strictly limited to the resuUsof toe measurinr 

K^S-TÄÄlr^ 0ther PhySiCal netWOrks ™1 be substituted fo^'ToTn 
Tre rfcip^cahrr^a^1 afa^tlme8 T. ^^ ^^ lndePendent of ^ -d results that 

,«*  The concept r: _■   rt-time power spectrum has been used in speech analysis where it is 

AanVu^'SX^fr   ^r^' Sh0rt-time aut—e^tion functions "spLch 
^rellTs ttrte^eiTJfe^^T * ^^ ^ ^^^^ elated 

11.   LINEAR SYSTEM APPROXIMATION 

INTRODUCTION 

The approximation problem of linear system synthesis is the determination of a realizable 
system function which closely approximates a prescribed system function.   If the  atter is the 
impulse response h(t), the approximate impulse response h-(t)  is then defined by a sum of 
predetermined approximating functions ^.„(t)  as "«"nea oy a sum ot 

h'(t)   =   J an^n(t) 
(G-43) 

As was indicated in the discussions on orthogonality, one way of specifying h*(t)  is to select 
a    such that the integral of the square of the magnitude of the difference between h(t)   and 

satisfy the reTatToT' reqUire8 ** ^ 0"(t)  be ortho^^' ™* « normalized, tot they 

J     *n(t)   *m (t)  dt    =     1 n - m (G-44) 

n 4 m . (G-45) 
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The minimum integral-square error  £„,,_ is then, 

Equation (G-46) requires that 

2,^^_ir.* (G-46) 
n"l 

h 2(t)dt    < 

Realizability of  h*(t) requires that h*(t), and consequently the 0n(t), should be zero for 
negative time. 

INTEGRAL-SQUARE ERROR 

The integral-square error criterion is the basis of an orthonormal function approximation, 
resulting in an approximation error which generally oscillates about zero with relatively con- 
stant peak amplitude.   A disadvantage of the square weighting is that there is no time interval 
of appreciable length where the error is very small.   However, this disadvantage may be 
relieved by properly weighting the approximation (G-43). 

Approximations in the time domain involve approximations, or errors, in the frequency 
domain.   An acceptable approximation of the impulse response will ensure that the approxi- 
mation o^ the gain, and real and imaginary part of the transfer function HCj*) is appropriate. 
However, minimizing the integral-square error may lead to phase errors, and it may be nec- 
essary to consider other constraints in order to control phase.   Although the integral-square 
error as a criterion may provide a simplification of analysis and computation, the implica- 
tions of its use must be carefully considered and understood. 

CONSTRAINED AND WEIGHTED APPROXIMATIONS 

A few methods which may be used to extend the use of the integral-square error criterion 
will be discussed briefly.   A constrained approximation is one in which the coefficients in 
series (G-43) are functionally related so that a property of h*(t) is specified.   Mathematically, 
a constraint may be expressed by 

K [h'(t)]    =   K     l]bn0n(t) (G-47) 

where K is a functional describing a property of h*(t), k  is a specified value of the property, 
and 

I 
n«l 

h'Ct)   =    Lbn *!.<*) (G-48) 

is the constrained approximation.   Examples of possible constraints are: 

(a)   Having the area under h*(t)  equal unity which is equivalent to normalizing the trans- 
fer function, i.e., H*(0) = 1. 

N 

1    =     J  h'COdt    =   2]  bn   j   -Vt)^ 
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(b)   Requiring that H'Cj^1) have a phase shift ±180° at «i = m, or equivalently, making h*(t) 
equal zero at t = 0. 

0  =   h*C0)   =    r bn4>n(0) 

(c)   The integral-square value of h*(t)  equals unity 

» CO 

1    =     J    hV)2dt    =   ]2  bn 2 
b, 

n> 1 

Conditions (a) and (b) are linear in the bn, while condition (c) is nonlinear and is equivalent to 
normalizing the average power contained in the impulse approximation. 

A weighted approximation is one which attempts to improve the integral-square error. 
The weighted integral-square error £„  may be written as 

- oo 

ew  =    j   [h(t) - h*(t)l2 W(t)dt (G-49) 
-00 

=   I   [w1/2(t) h(t) - W1/2(t) h'ct)]2^ . (G-50) 

1/2 
Thus, W     (t) h(t)  may be approximated by 

N 

W1/2(t)  h'(t)    =    ^»n^t)" (G-51) 
n"I 

From the theory of orthogonality, 

00 

an  =    J   W1/2(t) h(t) 0n(t)dt (G-52) 
. co 

and the weighted approximation h*(t) is 

l/(t)   -W_1/2(t)   J an^n(t) iG_53) 
n« 1 

where the functions 0n(t)  are now orthonormal with respect to the weighting function  W1/2(t). 

REALIZABILITY OF h*(t) 

Realization of a network may be readUy accomplished when the transfer function of the 
network is known as a ratio of polynomials with real coefficients.   Thus, if the problem of 
obtaining the Fourier transform of the impulse response as a ratio of polynomials is solved, 
then it is possible to complete the realization of the network. 

As a result of the requirements for physical realizability of a lumped linear stable sys- 
tem, the impulse response approximation h*(t)   of the system consists of exponential functions 
and has the form 

'At)   =    J^e'"* (G_54) 
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where 

1. Rn and sn  may be real or complex, 

2. h*(t)  is a real function, 

3. sn has a negative real part. 

Equation (G-54) may also be written as 

■ b, t        — _-   » ' 
h(t)=     ^flje +   Z^ Ai e sin a.^  +   ^ Bj e cos  a;.t . (G-55) 

i't i-1 i-i 

Hence, only three types of terms can contribute to the overall impulse response h*(t).   These 
are 

giCt)   =   ae"   ' (G-56.a) 

g2Ct)  =   At""    sin <ut (G-56.b) 

g3(t)   =   Be""*   cos cot . (G-56,c) 

In general, the quantities b, a, and a> are positive real values and independent of time, while 
the quantities a, A, and B may have any real value and may also be functions of time. 

When a transfer function is expressed as a rational fraction, the. roots of the polynomial 
in the denominator are called poles while those of the numerator are referred to as zeros. 
Every transfer function can be expanded into partial fractions with terms for each pole and a 
corresponding time function.   The impulse response would then be the sum of the time func- 
tions associated with the poles.   The significance of the poles is that the form of the relating 
time function is determined by their location in the "jaj" or "s" plane.   For example, the poles 
may be: 

1. Real and negative . . . 

The mode of response is a decaying exponential 

2. Zero . . . 

The mode of response is a constant 

3. Purely imaginary, two roots form conjugate pair . . . 

The pair of modes combines to form a sinusoid 

4. Complex with negative real parts, two roots forming a conjugate pair . . . 

The pair of modes combines to form a damped sinusoid 

The approximation may be improved for a given number of poles by shifting the zeros 
relative to each other.   A change in the location of the poles alters the quantities in (G-56.a), 
(G-56.b) and (G-56.c) and changes h'(t).   The zeros of the transfer function contribute to 
amplitudes and phase angles but do not influence the form of the time function as do the poles. 

REALIZABILITY OF SAMPLING METHODS 

Early discussions of sampling theorems related the number of discrete values necessary 
to reproduce a time function.   Subsequent discussions of physical elements have shown that the 
concept of an instantaneous sample is not possible since circuits cannot respond in a nonzero 
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interval of time.   Practically, multiplying a signal by a train of impulses actually involves 
mSlying it by a train of pulses with the duration of each being a fimte time, say t0. and the 
interval between pulses being the sampling time T. 

Fiß-ure (G-Q) illustrates sampling with samples of nonzero duration.   A Fourier analysis 
of the u^t simp^ing wtve  g(0 yields'a dc term plus harmonics of the sampling frequency. 
This can be expressed mathematically as 

n-I 

where K is the ratio of the pulse duration to the interval between pulses, i.e., K = ^/*.   By 
Sssfng the product of the signal f(t)  and the sampling function g(t) through a ^-pass filter. 
rreDncfof the sTgnal is obtained.   This representation is reduced in magnitude by a ^tor K 
^npXctL^ the delay and any distortion caused by the low-pass filter).   Amplifying by  1/K will 
!h!n «JS« tt to its SieS value.   The spectrum of thr sampled signal will be the spectrum 
Sthe or^8?g!S Ad^Lgnitud^ plus uppei and lower sidebands about the sampling 

frequency fc and its harmonics. 

Another important characteristic of circuit elements is that amplitude and phase response 
chartTerfsticT are S independent.   Their relationships may be formulated explicitly by 
rSS zero response prior to the time that the input is applied.   The amplitude and phase 
charLcteristLs thafdefin^ an idealized low-pass filter are not realizable in a Phy^al ne - 
work    However, although an ideal filter is nonrealizable, it may be approximated by physi- 
ram'reaUzaWe elements to within a specified accuracy.   The closer the aPP^ximation   he 
longer toe delay or time of propagation from input to output and the longer ^e Juration of 
trSeSs in the output in response to frequency components approaching cutoff.  In the actual 
design using sampling principles, the factors which affect the use of bandwidth are. 

(1) the tolerance to delay, 

(2) the tolerance to the deformation of the sampled wave in the output due to transients, 

and 

(3) the required precision of resolution. 

Depending upon the manner and extent to which the highest frequency comP°nf "V8.?.^ 
«mnlPd wave exceed W   2W  samples per second may not adequately represent the arbitrary 
^aÄng sampled    Jractically^ the?e are always limitations of bandwidth and hence there 
fsllwavs an "uncertainty" in the operation on a signal wave by physical elements.  By con- 
SoÄh^r^smUston. at the expense of delay, the uncertainty can f>« «fM^e^. 
arbitrarily small.   It is important to recognize that the uncertainty exists in the^sence of 
nfh^lnrrturbine influences    In most problems it is necessary to consider not only structural 
So^rS tofaSated realiz^bility requirements but also ^o^o^^ects 
which must necessarily encompass noise and component tolerances.   Certain aspects 
interrelationships will be discussed in later sections. 

12.    TIME-VARYING ELEMENTS 

INTRODUCTION 

A time-varvinK element is one where the coefficients of the differential equation describ- 
A time-var/infe element ibo independent functions of time, the element 

ordinary differential equations of finite order. 
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A primary reason for considering time-varying elements is that they permit generaliza- 
tion of linear network theory.   Time-varying elements are the circuit counterparts to wave- 
forms having time-varying spectra.   This suggests that descriptions which were used to char- 
acterize time-dependent functions may be applicable for element analysis. 

CLASSICAL THEORY OF DIFFERENTIAL EQUATIONS 

With the exception of linear equations with variable coefficients which are reducible to 
those with constant coefficients by a change of variable, there are no general methods for solv- 
ing such equations of order higher than the first.   In general, solutions of differential equations 
with variable coefficients cannot be expressed in terms of a finite number of elementary func- 
tions, and lead to new functions which are defined either by definite integrals or by infinite 
series, such as Bessel or Legendre functions. 

For a time-varying element of input c(t)  and output r(t), the homogeneous solution of its 
linear differential equation of order n. 

»„(t) 
d r(t) 

dt" 

n-1 
d       r(t) + ai^) —^rr + 

dt 
•n-l't)   ^+  %(*)   >■(») 

dt dt""1 

+ K.l(V ^tb^t) c(t) (G-58) 

where the a^t)  and bjCt)   are continuous single-valued functions of t, possesses  (n)  linearly 
independent solutions.   If these solutions are d^t), 02(t) <£„(*)> then the general solution 
r^t)   is given by 

r^t)   =   c^iCt) + c,02(t) + •■•+ cn</>n(t) (G-59) 

where the c.   are constants.   The simplicity of (G-59) indicates it may often be of practical 
importance to know whether a given set of functions is linearly independent.   The necessary 
and sufficient condition that a given set of homogeneous solutions ^jft), 0: t) <^I/

t) ^e 

linearly independent is that the determinant 

*1 t2 ■ •   •      *n 

4>i *'2 • • *; 

*[ 4>'2 • • < 

sr" 4*2 
1) ■ ■ 4 (n-l) 

+    0 (G-60) 

This is called the Wronskian determinant. 

Differential equations of many elements involving time-varying parameters may be solved 
by direct methods.   An example of this are first-order linear equations of the following form, 

d-^ +  a(t) • r(t)   =   c(t) 
dt 

(G-61) 

where  a(t) and c(t)  are independent functions of time.   It the dependent variable r(t)   has 
the initial value. 

r(0)   =   o (G-62) 
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the general .solution of (G-61) is 

r(0    =   exp -Ja(t)dtl   •    )     exp[a(t)dt]c(t) dt (G-63) 

using the method of substitutions.   Other methods, such as the variation of parameters and 
those employing differential operators are available. 

The physical problem may permit approximations to be obtained readily with sufficient 
accuracy for practical use.   A very useful one is the B.W.K. approximation, used with time- 
varying elements having parameters which exhibit only small variations about a large average 
value, and a differential equation of the form: 

±lip + a
2(t) r(t)   =   c(t) . {G-64) 

dt 

If a2(t)   is a real positive function and satisfies the condition given, a useful approximation to 
the general solution  r^t) is 

r^t)   = ~-  (A COS   [q(t)]   + B  sin  [q(t)]) (G-65) 

where A and B are arbitrary constants, and  q(t) is given by 

q(t)   =   |a(t)dt    • (G-66) 

It is particularly good if the variations of  a(t) are such that 

|a2(t)   _    a-(t)      3/a'(t)\2! (G-67) 
2a(t)       4 \a(t) 

in the range of (t)   under consideration.   Other approximations exist, depending on the type of 
elements involved and the temporal range of their parameters. 

TRANSFER FUNCTION 

It was shown in section (G-3) that a linear time-invariant element can be usefully charac- 
terized through knowledge of its transfer function H(j«). Transfer functions can be similarly 
applied to linear time-varying elements. Since they are functions of both time and frequency, 
they are designated by H( jw; t). 

By introducing the Heaviside operator p = d/dt, the problem of characterizing the ele- 
ment, that is, the solving of the differential equation (G-58), may be simplified to determining 
the ratio of input to output, H(p; t), 

r(t)        b0(t)pm + b1(t)p°"1 +---+bro(t) 

cC*) a0(t)p    +  a1(t)p + ••• +  an(t) 

The transfer function H( JüJ; t) of a time-varying element N is defined as 

H(ja,;t)   =   r*^"86 °fwf ^ e "   . (G-69) 
e 

Thus, when the input is eilJt, (G-68) becomes 



H( JCü; t)   = 
r(t)l 

|c(t)-B 

bJtXJcü)    + bjftXJo.) 

^tXJw)    +  ajCtKj^) 

+ bm(t) 
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(G-70) 
n(t) 

The time-varying frequency-response function Hdco-.t) constitutes a natural generalization of 
H(joi). If the element is initially at rest and the Fourier transform of the input eft) is denoted 
by C(j£j) the expression for the output at time t, r(t), in terms of H(JüJ; t) and C(jw) is 

r(t)   =   ^- j H(j«;t) C(ja,)e,<Utda). 
-00 

Figure (G-10) compares fixed and variable elements for a sinusoidal input. 

(G-71) 

TIME 
INVARIANT 

H{j<») 

AA/1 

-AAAA 
Re^O^Aei1^1] 

Re [Ae'^1] 
TIME 

VARIANT 
H(jwit) 

Re[H(K;t)Aei<Uo1] 

Figure G-10   -   Comparison   of time-invariant  and 
time-variant elements   for a sinusoidal input 

When the spectrum varies with time, more weight must be given to values ot the time- 
function occurring at certain times than at others.   This implies a type of modulation.   In gen- 
eral, functions with time-varying spectra may be analyzed by considering two types of varia- 
tions, one of which involves rapid fluctuations of the functions, the other, slow changes. 

IMPLLSE RESPONSE 

A tin e-dependent transfer function can be associated with a time function which has some 
characteristic of it varying with time, indicative of the behavior of the element.   This is the 
impulse response of the network and its use retains the advantages discussed previously for 
time-invariant elements. 

If the input c(t)   is the impulse function  S(t - T), then the output r(t) is denoted as 
h(t; T)   and is called the impulse response of the element, 

h(t; T)   =   H(p; t)  S(t-T) (G-72) 

As for a fixed network, the impulse response and transfer function are conjugate Fourier 
transforms.   The Fourier transform of (G-72) with respect to T, considering t as a parame- 
ter, is 

• ] oit 3{h(t: T)}   =   H(-i<o; t)e 

Taking the inverse Fourier transform and replacing & hy -co, 

(G-73) 
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h(t:T)   =   i   J   H(j-;t)eJ^t-T)d.. (G-74) 
- «0 

Transforming both sides of (G-74) with respect to T, 

CO 

HCi^t)  e^   --    \   h(t;T)e-JMTdT. (G-75) 
- CD 

Equations (G-74) and (G-75) establish the conjugate behavior of h(t; T) and H(JCJ; T). Since 
H(ja!; t) can describe a network completely and is related to h(t; T) by (G-75), then h(t; T) 
also completely describes the network. 

In general, the output r(t)  is related to the input  c(t) through the impulse response, i.e., 

CD 

r(t)    =     j   h(t; T)  c(T) dT . (G-76) 
- 00 

For a physically realizable network, h(t; T) = 0   for T > t, and c(t) = 0 for T < 0.   (G-76) 
then reduces to 

i 

r(t)   =    J   h(t; T) c(T-)dT (G-77) 
o 

and is referred to as the convolution integral. 

GREEN'S FUNCTION 

A method which is useful in describing time-varying elements involves the use of Green's 
function.   Green's function is used to characterize the network's impulse response and the 
differential equation which describes its behavior.   (G-58) may be written as 

Lr(t)  =   y(t) (G-78) 

where L is the linear differential operator 

L   =    ao(t)^+   ajCt)  ^—[ + ---+   an(t) (G-79) 
dt dt 

and y( t, is a known function of the input, namely 

VW   =  b0(t)^Ub1(t)<^^+---+bm(t)c(t). (G-80) 
dt dt 

Subject to the boundary conditions 

r
(,l)(0)   =   0 for       a = 0, 1.  ....   n-1 (G-81) 

the solution of the differential equation (G-78) becomes 

t 

r(t)   =    ]   G^t; x)  y(x)dx 
(G-82) 
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where G^t; x)  is the one-sided Green's function.   The latter is defined as 

(-1) 
Gl(t: X)    =   t>0(x) W(x) 

02(x) 

qi-Cx) 

*;■■ -y(x)   ^n'2>(x) 
,("-2), 0(n-2)(x) 

(G-B3) 

where Wfx) is the Wronskian of the linearly independent solutions {^(t), *2(t). ...,*n(t)} 
of L r(t) = 0.   Since the upper limit in (G-82) is variable, the integral equaüon is of the 
Volterra type. 

If N is the linear differential operator 

then 

and (G-82) becomes 

N   =   b„(t)p    + bi(t)p +---+bm(t) 

Nc(t)   =   y(0 

r(t)   «    J   G^t; x)Nc(x)dx. 

(G-84) 

(G-85) 

(G-86) 

Thus, Green's function completely characterizes the network for a given input  the output being 
uniauehr determined.   Equations (G-82) and   G-86   are similar in form to (G-7.).   For N -  1, 
Station between the^mpulsive response and the one-sided Green's function of a linear net- 

work is 

(G-87) 
h(t; T)   =   OxCt;!)        t > T| 

=   0 t < Tj 

If N cannot be expressed as (G-84), then Gi is not the same as h. 

The advantage of Green's function in investigating linear systems is ascribed to the func 
tion's Properti6?and the ease with which physical interpretations may be made. Some of the 

properties are: 

(a)  ^Oi(t:x) 3t 
=   0 for    o=0,l,....  n-2 

,r.-l 

(b)   -SH Gi(t: x> 
at t-x 

b„(x) 

(c) LjG^t; x)   =   0 

(d) G^t; x) is unique 

(e) Given G^t; x), a set of solutions of Lr(t) = 0  can be determined explicitly. 

[Lt implies that the differential operator L operates on functions of t.] 
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For the general boundary conditions of the form 

Ua(r)   =    Z  Aa/^Wi:  B^r^'^fb)   =   0 a=  1,2, ....  n (G-88) 

vfhere a and b are two distinct time instants, b > a, the solution of (G-78) is 

b 

r(t)    =     f  0j(t; x)y(x)dX (G-89) 
a 

where G2(t; x) is the two-sided Green's function.   Since both limits are fixed, (G-89) is a 
Fredholm integral equation. 

From section F-4, the Volterra and Fredholm integral equations can be reduced to algebraic 
form through the use of integral transforms, the Laplace and Mellin transforms, respectively. 
Thus, integral transforms can be considerably useful in solving problems concerning time- 
varying elements. 

INTEGRAL TRANSFORMS 

The use of integral transforms to solve differential equations of specific time-varying 
elements has already been discussed in section F-4.   To review briefly, the application of an 
integral transformation method to linear networks is based upon first resolving the solutions 
of the differential equations into an integration (or summation) of elementary functions k(t; s) 
where (s)   may be considered a complex parameter. 

For fixed, that is, invariant, elements, resolving the solution  r(t) consists essentially in 
expressing it in the following form 

r(t)   =    Jk(t;  s)R(s)ds (G-90) 
c 

where C is the contour in the s-plane (generally a straight line parallel to either the imagi- 
nary or real axis) and  RCs^ds is a weighting factor which provides a measure of the content in 
r(t) of those components k(t; s) in which the parameter lies between s and s + ds.   R(s) is 
called the spectral function of   r(t) relative to k(t: „).   Due to the linear nature of (G-90), the 
expression for R(s)  in terms of r(t)  is of the general form 

CD 

R(S)   =     f K(s; t)r(t)dt (G-91> 

-OD 

where K(s; t)  denotes the inverse of k(t; »).   To complete the uniqueness of a spectral deßcrip- 
tion, the desired relr.tion between k(t; s) and its inverse is 

jk(t; s) K(s; f)ds   =    S( t - f) (G-92) 
c 

where  S(t - f)   is the delayed unit impulse. 

For time-varying elements, (G-91) may be modified as 

R(.s; t)    =     j K(s; K) r(\)d\. (G-93) 

This is a time-variable transform which maps a function in the time or t -domain into a gen- 
eralized s; t domain, where t behaves like a parameter.   Thus, (G-93) is a "running 
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transfer -i," similar to that used to describe the instantaneous power spectra (B-16) for vari- 
ous waveforms having time-varying spectra.   The relation between the elementary function and 
its inverse is as defined by (G-92).   The inverse transform is then 

,(t)   =    Jk(t; s) K(s;  t)ds . (G-94) 
c 

The set of functions k(t; s) constitutes a coordinate system in some vector space. Transfor- 
mation from r(0 to R(s; t) implies a decomposition of r(t) along the axis of the coordinate 
system which is dependent of time. 

The time-variable transform will inherently contain the properties of the single-variable 
transform.   However, since it involves an integral over finite limits, it has additional proper- 
ties.   A theorem resembling Parseval's may be applied when K(s; t) is described over the con- 
tour C by 

K(s: t)   =   f(t)k,(t; s) (G-95) 

where   f(t) is a function of t for all   s over C and the asterisk denotes the complex conjugate. 
If   r(f) is bounded for 0 < f < t  the theorem then states, that: 

t 

JlRCs; t)!2 ds   =    f   f(£)r2(Od£. (G"96) 
c o 

Other integral transforms exist for the solution of physical problems.   The type of trans- 
formation performed - specifically, the kernel function used - depends on the linear system 
and associated initial conditions.   A method of developing transforms for any linear system is 
to introduce boundary conditions in the way that the Laplace transform does.   As an example, 
consider the following differential equation describing a time-varying element 

a(t) r'(t)  + b(t) r'(t) +  d2r(t)    =    c(t) (G-97) 

where a(t)  and b(t) are functions of time and d2 is a constant.   It is desired to reduce this 
to an algebraic equation in the transform domain, such as 

q(s) R(s) + d^Cs) = C(s) + [terms involving initial conditions].        (G-98) 

when the integral transformation of the form 

CD 

0=1 
0 

R(s)    = K(s; t) r(t)dt (G-99) 

is applied, with q(s)  being an arbitrary function of the transform variable. 

The kernel, K(s; t), is obtained by applying (G-99) to (G-97) and integrating by parts.   K a 
function of time g(t) is included in the kernel to make the linear differential operator of (G-97) 
self-adjoint, the kernel becomes 

K(s; t)   ■   g(t) t(s; t) (G-100) 

where  g( t) is given by 

.<■>—fl5"^-] <G-101) 

For these conditions, e(s; t) must satisfy 

a(t) £tt(s; t)  + WO et(si  t)  -  q(s) t(s; t)   =   0 (G-102) 
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where  tt   and   ett refer to the first and second derivative with respect to time, respectively. 
(G-102) shows that the appropriate transform depends on a knowledge of the solution of the 
homogeneous form of the system equation (G-97). 

The transform method is most useful when the system under consideration is subjected to 
various excitations.   It is important to note that the philosophical difference betw. en the finite 
upper limit of (G-93) and the infinite upper limit of (G-99) is that the former pro.   ces a trans- 
form which varies with time, its value at any one instant being independent of future values of 
the response.   The latter produces a transform, such as the Laplace and Mellin transforms, 
which depends on the entire history of the waveform. 

RANDOMLY-VARYING ELEMENTS 

Up to this stage, only deterministic time-varying elements have been discussed.   They 
have been represented by differential equations with variable coefficients whose values may be 
predicted with probability one at future instants of time.   Their descriptions are special cases 
of a more general approach which considers statistical characteristics. 

Randomly-varying elements, those whose parameters vary randomly with time, are becom- 
ing of increasing importance and their analysis permits a more general classification of ele- 
ments.   Consider a nonrandom input c(t)  applied to a randomly-varying element whose behav- 
ior may be expressed by 

a0(t) ^l + •■•+  anr(t)   =   c(t) . (G-103) 
dt" 

If ai(t)  varies as 

a^t)   =   aT(t) + ^(t) (G-104) 

with ^7(t) being the expected value of e^t)  and e^t) is small compared with a.(t), then 
(G-103^ can be solved by perturbation techniques, with r(t) being the sum of a nonrandom 
term and a random term ascribed to e(0. 

If characterization by a differential equation is impractical, correlation and spectral anal- 
ysis may be used.   Similar to the treatment applied to descriptions of random waveforms, it is 
convenient to assume stationarity in analysis.   Let [u(t)]   and  [v(t)]  represent two independ- 
ent stationary processes which, when applied separately to a randomly-varying element, result 
in processes having autocorrelation functions ^U(T)   and ^V(T), respectively.   It is assumed the 
inputs are independent of the random processes governing the behavior of the element.   If by 
applying process  [au(t) + /3v(t)]   to the input, where a and ß are arbitrary real constants, a 
random process is produced whose correlation function 0au+/3V(T) is given by: 

ta^fivW   =   °-2W> + ß2K^ <G-105) 

for all  a,/3, [u]   and   [vl, then the element is said to be linear.   Linearity, here, implies the 
superposition property for correlation functions.   Any stationary linear element will have this 
property.   (G-105) can be used as a basis for determining whether an element is linear by 
observing the input and output over periods of time sufficiently long to enable obtaining accu- 
rate estimates of the correlation functions involved in (G-105). 

The correlation function of a stationary randomly-varying element is defined as 

^(JOJJT)   =   E{[H(jw; t)  H(-ja;; t + T)]] (G-106) 

where H( jw; t) is the time-dependent transfer function given by (G-70) together with (G-fi8). 
For each real w, [H( j^; t)] is a stationary random process.   If the input is a stationary random 
process [c(t)], independent of [H(J^; t)] , then the correlation function of the output process 
[r(t)]    is 
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tr(ry ^  J0(i^r)j{0c(.))e^d. (G-107) 

where fU (r)\ is the Fourier transform of the input correlation function, ^(r).   This rela- 
Tion is olthi same form as that expressing the output of a time-varyxng network with tr«.sfex 
function V(j-: r), with the input being ^c(r).   This can be seen by comparing (G-107) with 
(G-71). 

13.    CONCLUSION 

A number of methods have been reviewed, interrelating various defc*}Vtiona ^e™ 
elemerrts    An attempt has been made to stress the basic similarities of these methods with 
tecKues prev ously discussed for representing structural detail of functions.   FuncUons 
discussed earlier included periodic, transient, and random processes which were indicated as 
JeiS ^ imp" t^ce for representing temporal or spatial structure.   The basic philosophy 
Svofved the concept that the major purposes of representing and t^^^^^.^^^e are 
as s mplif ication and matching operations.   The choice of a particular method is consequently 
dLenTnt not oriy on the nature of the function but also on the use which is to be made of the 
reoresentauon    TTOical uses with which the discussions were concerned 'ncluded improving 
XaUzafon  understanding, and computation, and facilitating P^^cal reali ation    Since sim- 
Dlüication is a highly subjective concept, it is necessary to include additionally, for most 
app ica ions! quantitative measures of "completeness."   Characteristics of the ^eBral-square 
e?ror as a criterion were discussed together with the use of Fourier transform and related 
methods applied to time-invariant structures.   Sampling, and correlation and spectral analy- 
sis were outlined, along with additional descriptions which were required particularly when 
boundary conditions were imposed simultaneously in conjugate domains. 

Analogous relationships were seen to occur when the representations of linear circuit 
elements were reviewed.   Just as the representations of functions were characterized by a 
S rail of meS and techniques, the analysis of physical elements may also be made in 
terras of differential-integral equations, transfer functions, and impulse response.   These 
raet^s may be extended to include time-varying structures.   Perhaps the most ^P^a"t 
sinSrconcept is that the number and type of structural components to be used - (whether the 
Stem taXes '-signals," elements, or the relationships between signals and elements) - 
^fmt to be regarde^as intrinsic properties, but as convenient reference elements which are 
dependent on the mode of representation and the nature of the problem. 
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H.    LINEAR ANALYSIS OF SPATIAL  ELEMENTS 

1.    INTRODUCTION 

A number of analogies exist between circuit and spatial elements when linear analysis is 
aDDlicable in describing behavior of elements.   It is important to recognize, however   that the 
"anS'marconsist solely of a common mathematical formulation, and that the  u 1 utiUty of 
anäSes Tan only be established by considering the physical nature of the elements' excitation, 
toe environment  n which it is to function, and the use which is to be made of the descriptions. 
äsSIptS ami thlS transformations assume practical importance when they serve   o por ray 
concTsely and completely element behavior and reduce some of the difficulties associatea with 
improved "derstaW computing or physical realization,   ^^^f in ^rfZlVrT 
tant since design details and computations made in one area may be used in other aieas pro 
vWed that correct analysis of the physical process has been made.   In addition to analytical 
Ind phystaranalogueswhich exislt between circuit and spatial elements, properties of acous- 
tTcal rLiation reslmble electromagnetic fields, and as a result characteristics ^ch as the 
directivity patterns of acoustical transducers may be derived from microwave antenna or opti- 
calelement configurations, and in some cases acoustical structures may be used for eiectro- 
mk/nS problems   When structural detail of the radiated field is of primary concern, it is 
Sfverdenrto confine the analysis to transmitting sources since directivity patterns are iden- 
tical for transmission and reception when linear, reciprocal elements are involved. 

Methods for describing basic properties of spatial elements may "** *Pa"; °r/Pac*- 
freauency as variables.   The freedom of selection corresponds to the choice of time or fre 
üuencv in circuit problems.   Similarly, correlation and spectral analyces, and statist cal 
^eS™ be employed.   As was indicated in earlier discussions, the use ot statistical 
me hods may be «quired in order to reduce dimensionality, or maybe required because the 
S avaiS information is statistical in nature, and in many problems combinations of 
deterministic and probabilistic descriptions are required. 

2.   LINEAR SUPERPOSITION 

A spatial element is said to be linear if it obeys the law of linear ^P6^081"«11-. Tp
h.e P^0" 

tical result is that the directive properties of a spatial element such as an acoustic line trans- 
duclr may be deTermined by examining the behavior of a number of discrete recemng points 
snaced along the Une.   In the case of longitudinal waves such as sound, a point source would 
consS of a sphere which is small in comparison with the wavelength emitted so as to radiate 
a iherical wave    Surfaces of constant amplitude are spheres concentric «1th the source    For 
electromagnrtic waves which are transverse, the electric field, the magnetic field, and the 
drectioTof propagation are perpendicular to each other.   A point source ^f™*™^*/* 
d poLThich may be considered to be a short wire carrying the current, with the length of the 
wTre bei smaU in comparison with the wavelength.   An expression may be derived for the 
response ofTsingle point source.   The amplitude and phase of this response are expressed as 
functions o  toe position of toe element with respect to a transmitting point.   The total response 
fobSed by combintog the elementary responses for the spatial device through an integration 

which reStesS spatial configuration and hence, will be a function of the dimensions and 
bearing of the incident radiation. 

Figure (H-l) shows a comparison of the directivity patterns of a discrete "^ar array 
having elements spaced at intervals of  K/2 and a continuous, uniform linear transducer   fc,ach 
tove I S length of SK  and the relative acoustic pressure is specified by the «"o of the 
vXge developed by the acoustic energy of given intensity, at a given bearing, to that developed 
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Figure H-l - A comparison of the directivity 
patterns of (A) a discrete linear array having 
elements spaced at half wave lengths and (B) a 
continuous, uniform line transducer 

by the acoustic energy of the same intensity arriving along the axis normal to the array.   A 
liie transducer is equivalent to a discrete array having an infinite number of elements.   It is 
seen that there is little improvement in directionality to warrant providing a discrete array 
wjth more elements than are sufficient to give a half-wave spacing.   The height of the sec- 
ondary lobes may be slightly increased but the width of the major lobe is practically unchanged. 

When the responses of discrete receiving elements are known, the response of an arbitrary 
configuration can be derived by using the piinciple of pattern multiplication.   The radiation 
pattern of an array of spatial elements, each of which has the same pattern with the same 
orientation in space, may be found by (1) replacing each of the elements by an omnidirectional 
element at the same point and with the same amplitude and phase of excitation, (2) determining 
the array pattern of the resulting array of omnidirectional elements, and (3) multiplying the 
array pattern by the radiation pattern of the individual elements of the original array. 

A linear array of N equally-spaced elements has N degrees of freedom since it is possi- 
ble to establish N coefficients of the Fourier series for the total far-zone pattern.   As a result, 
N linearly i .dependent aperture distributions are available, and consequently, N points may be 
assigned to the radiation pattern.   In the general case, where the elements are arbitrarily dis- 
tributed, each element will have an added degree of freedom, namely, its position along the axis 
of the array.   Therefore, the array with arbitrarily distributed elements needs, in general, 
fewer elements.   This is analogous to nonuniform temporal sampling of a signal. 

3.    POINT SOURCE  RESPONSE;   CONVOLUTION THEOREM 

The analogy to the impulse response in the time domain is the response of a spatial ele- 
ment to a poxnt source. Such a source radiates uniformly in all directions and is the building 
block needed for linear superposition. 

In two dimension if h(x,y)  is the point source response, then subject to linear superposi- 
tion, the total response  r(x,y) for an extended source distribution  s(u,v) is given by 
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CC CO 

r(x,y)    =     {     fh(x-u,   y-v)   s(u,v)dudv V 

where  f x v) and    J.V)   are the spatial coordinates for the output of the spatial element and the 
Tource   respectively.   Hence, analogous to a temporal system, the output of a spatial element 
is the convolution of its point source response and input.   This is the spatial convolution theo- 
rem    Although Eq. (H-l) can be readily formulated, it cannot always be integrated in closed 
form and either numerical analysis or transfer function descriptions may be required. 

The directional discrimination of a receiver depends on the response to sources outside 
the major lobe.   Boundaries imposed on spatial extent produce sidelobes in the response and 
affe^he interpretation of the various spatial descriptions.   For example, a limitation to per- 
fect transmission in a coherent system is the reciprocal relationship between the wavelength 
of the radiation and the spacing between detail in the object (or source)    ^s indicates tot 
information cannot be transmitted in closer detail than the wavelength of the incident radiation. 

The plane wave response pattern of a receiving antenna is obtained when the radiator is a 
point source at a sufficient distance such that an increase in the distance will Produce no 
delectable chaiiKe in the pattern.   If the source subtends an appreciable angle, the response 
pa terfwiir^e mod« ed.   This is shown in Figure (H-2) where the pattern of a receiving antenna 
Lcomplred to "he pattern observed when the point source is replaced by an extended source, 

at the same distance. 

/ 

PO.HT SOURCE .«TEHOED SOURCE (UH.FORM) 

TRUE MITEHHA \ /     ^ OBSERVED PATTERN 
PATTERN 

RECEIVING ANTENNA \     /^   RECEIVING ANTENN4 

Figure H-2 - Antenna pattern for (a) a point source and 
(b) an extended source 

The effect of the source distribution on the observed power pattern G(*0)   may be given as j 

G(*0)   =   5J"F(0+0o)f(*)d* (H"2) 

where 

G(4>0) * observed or resultant pattern, 

F(^+ AO) = true antenna pattern (as measured with a point source), 

A = J f(*) d* = effective angle subtended by source (total power flux of source), 

f(cp) = source distribution. 
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All patterns in the above equation are proportional to power and are shown in Figure (H-3) 
where the main lobe of the antenna is displaced from the center line of the source by an angle 
<Pa  and the over-all source extent is  2a.   For a point source, the source pattern in Figure (H-3) 
reduces to an impulse at * = 0 (a = 0)   and 0(0) = F(0).   Thus, for a point source, the observed 
pattern is identical with the true pattern. 

Figure (H-4) illustrates the case of an extended source that is much broader than the 
antenna pattern, aud with the source being represented by a step function equal to unity between 
+a and  -a and zero elsewhere.   In the range of <P0 between  a-/? and -(a-zS)   the observed 
distribution is constant but reduced by a factor B/A, where (B)   is the area under the antenna 
pattern and (A)   is the area under the source pattern. 

In general, the pattern F(0+<po) and the observed pattern G(*0)  art known while the source 
distribution f(<p) is unknown.   The latter can be determined by assuming various source dis- 
tributions and calculating the corresponding distributions, G(0O).   If the calculated G(0O) dis- 
tribution agrees with the actual observed distribution, then the assumed source distribution 
f(0) represents the true source distribution or its equivalent.   A more direct method is to 
expand the distributions into Fourier series and relate the corresponding coefficients as dic- 
tated by Eq. (H-2). 

f(0), SOURCE PATTERN 

Figure H-3 - Antenna pattern, source pattern, 
and resultant or observed pattern 

f(*),   SOURCE PATTERN 

F(0),   ANTENNA PATTERN 

QOP,,),   OBSERVED 
PATTERN 

-(a-/?) 
► 0 or * 

Figure H-4 - Case of  source pattern that is 
much wider than antennc. beamwidth 
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4.    TRANSFER  FUNCTION 

From the properties of Fourier transforms, the space-frequency spectrum of an aperture 
distribution modified by any number of successive linear operations is the product of the space- 
frequency spectrum of the original distribution, and the spatial spectra of the several linear 
operations.   Therefore, an analysis performed in the space-frequency domain replaces suc- 
cessive integrations by successive multiplications.   The space-frequency spectrum of the 
response of a spatial element may be expressed as 

R = (S) (H) 
response source transfer function , 
spatial spatial of spatial element (H'3) 

spectrum spectrum 

H is the Fourier transform of the point source response whose coordinates are spatial fre- 
quencies having dimensions of reciprocal length. For an n -dimensional distribution this is 
written as 

Hfsl's2 sn)    =     J     •••    J    h(xl'x2 xn)e ax« 
(H-4) 

where   sj = - sin e./\.   The space transfer function completely characterizes a spatial ele- 
ment.   It is primarily a steady-state or far-field description and, as indicated above, is often 
more convenient to work with than the point source response. 

5.    TRANSFER  FUNCTION METHOD 

The general problem of detei mining the response of a spatial element requires knowledge 
of the degree of coherence of the excitation.   The extreme cases of completely coherent and 
incoherent elements are readily represented; however, partial coherence characterizes real 
elements. 

An incoherent element is linear on the basis of energy, permitting the use of Fourier 
analysis only if it is made on an energy basis.   Incoherent elements behave as low-pass filters 
since they deal with the addition of nonnegative intensity variations.   The inherent flexibility 
associated with spatial-frequency operations is lost when incoherent elements comprise the 
system.   A coherent element is linear in amplitude and phase.   The Fourier components that 
make up the response may be controlled by using the proper weighting with the element.   In 
reception, a coherent element benaves as an amplitude- phase detector whereas an incoherent 
element is basically an envelope detector. 

Analogous to circuit elements, the transfer function of a spatial element can be deter- 
mined from its response to plane wave random noise.   Using the concept of the space correla- 
tion function developed in section E, the correlation function at the output of a spatial element 
may be obtained by convoluting the correlation function of the elements impulse response with 
the space correlation function of the input, and integrating the result over the entire volume 
occupied by the element.   If the input is plane wave "white" random noise, its correlation func- 
tion will be an impulse.   This greatly simplifies the integration, and by applying the Wiener- 
Khintchine theorem, results in the output power spectrum being proportional to the square of 
the absolute magnitude of the spatial transfer function.   Spatial elements having random inputs 
can be considered to be incoherent. 
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6.   SPACE-FREQUENCY EQUIVALENCE 

When a Fourier relationship exists between the radiation pattern and the amplitude dis- 
tribution across the aperture, the reciprocal relationship between aperture and pattern widths 
is displayed by similarity of the radiation patterns for isofrequency receivers of large spatxal 
extent and wide-band receivers of small extent.   The equivalence existing in a receiving array 
between its spatial configuration and the frequency configuration of the source is illustrated in 
Figure (H-5).   As the spatial configuration is varied to improve the directionality, in the fre- 
quency case this corresponds to using a source having wide-band signals.   If a ccntir.vious, 
uniform array is replaced by point sources spaced at one half wavelength intervals, then the 
continuous frequency distribution of the sourceswill be replaced by a set of discrete frequencies. 
When the element spacing (or frequency spacing) is made large, multiple major lobes result. 

VARIOUS SPACE COMPLEXITIES OPERA- 
TING AGAINST A SINGLE FREQUENCY 
SOURCE  

SPATIAL fREQUENCY 
CONFIGURATION   CONFIGURATION 

FULL DIRECTIONAL 
RADIATOR 

DISCRETE   RADIATORS 
SPACED X/2  APART 

O       O       O       O * 

RADIATORS SPACED 
>>X/2 APART 

O O O " 

-+-1- k 

BEAM   PATTERN 

A 2-ELEMENT CORRELATION ARRAY OPERATING 
AGAIMSTA SOURCE HAVING VARIOUS 
FRFOIIFNCY   COMPLEXITIES  

SPATIAL 
CONFIGURATION 

FREQUENCY 
CONFIGURATION 

CONTINUOUS BAND 
OF FREQUENCIES 

o 

o 

o 

o 

DISCRETE FREQ. 
CLOSELY SPACED 

o 

n 
DISCRETE FREQ" 
WIDELY SPACED 

Figure H-5 -  Equivalence between the complexity of the receiving array 
and  the complexity of the frequency configuration of the  source 

7.    UNEAR  ELEMENT APPROXIMATION 

INTRODUCTION 

To approximate a spatial element means to approximate its point source response (or spa- 
tial transfer function) by a sum of predetermined responses, properly weighted and constrained. 
This   similar to circuit elements, may imply specifying the phase shift in a particular direc- 
tion, or the plane wave response at broadside, or normalizing the integral square value of the 
point source response over a given spatial coordinate system. 

To synthesize a spatial element which will have a specified directional characteristic, it 
is often convenient to deal in terms of line sources.   The idealized concept of a true line 
source is useful for studying the directional characteristics of many physically realizable 
transducers.   Equivalent line source concept facilitates evaluation of the directivity pattern in 
a single plane of more complicated transducers.   For example, a cylindrical source with a 
radius less than 1/6 wavelength is closely approximated by a line source and its directivity 
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pattern may be synthesized by means of line-source theory. Another case of practical interest 
is the plane-surface radiator where the directivity pattern in a single plane may be obtained by 
considering an equivalent line source. 

Various methods for synthesizing line sources to obtain specified directivity patterns will 
be discussed.   An examination will be made of the effects of finite aperture width and of ampli- 
tude and phase errors on the radiation pattern.   In the discrote case, that is, a linear multi- 
element array, there is the additional consideration of departure from uniform spacing.   These 
facets of the synthesis problem, including use of integral transforms and additional descrip- 
tions ior evaluating the performance of spatial elements, are also included in the discussion. 

TRUE RADIATION PATTERN 

Before the true radiation pattern is considered in terms of the synthesis problem, addi- 
tional insight will be obtained by reviewing the highlights of its derivation.   In the transmission 
of acoustic waves, there is no rotational motion of the particles so that the velocity vector of a 
particle is an irrotational vector.   If u.v.w are the velocities in the x.v.z directions, respec- 
tively, the velocity vector V  may be represented as the gradient of some scalar potential func- 
tion *, i.e.. 

where V is termed the velocity potential.   Equation (H-5) may also be written as 

3x 

_   3*(x,y,z,t) 
" Si 

(H-5) 

(H-6) 

The velocity potential, in one-dimension, at a point M due to a harmonic point source of 
strength * at a distance r is given by 

where 

4.(M)    =      *_ei("t-kr) 
477r (H-7) 

fx/k = c = velocity of propagation through medium, 

k = 2n/k = the wave number which plays the same role in space coordinates as u does in 
time coordinates, 

K = wavelength which measures the length of one cycle in space just as the period 
T measures one cycle in time. 

The source strength <Ky) is the distribution of strength along the source, where it is assumed 
to be finite and continuous and has a finite number of finite discontinuities.   Outside the interval 
of source dimensions,  «(y) is assumed to be zero, and from Eqs. (H-6) and (H-7), has the 
dimensions of velocity-volume per unit length.   It will be assumed that the time variation of 
the source-strength corresponds to the single angular frequency u. 

Consider a source of length (a)   in the coordinate system of Figure (H-6).   The sound 
pressure at the point M, p(M), is given by   -pO*/at)  where p is the density of the medium, 
and the total pressure at point M is found by integrating along the line of the source: 
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Figure H-6 - Coordinate system 
for directivity pattern of a line 
source 

p(M)   = ^ *>"*     j *(y)  e jkr 
dy. (H-8) 

This equation holds for any point in space and is correct 
for any source-strength distribution for which the inte- 
gral is convergent. 

A requirement necessary for restricting point M  to 
the Fraunhoffer diffraction region of the pressure dis- 
tribution ^s that the path difference between contributions 
from the center and the end of the source be small com- 
pared to a wavelength.   This may be expressed as 

R » 8X (H-9) 

The acoustic pressures and particle displacements will then have common phases and ampli- 
tudes at all points on any plane perpendicular to the direction of wave propagation. Using Eq. 
(H-9), Eq. (H-8) becomes 

PCM)   = i^eiO'-*«)   j2   «»e'-^'dy. (H-10) 

Normalizing with respect to broadside (19= 0), the normalized directivity pattern, G(ö), 
becomes 

m/2 

0(6) P(g) 
P(O) 

\    OCy^'  * dy 
• ./J 

•/a 
|    *(y)dy 

(H-ll) 

If a normalized source strength distribution F(y) is defined as 

*(y) F(y)  = 

f     *(y) dy 
i/3 

then Eq. (H-ll) may be written as 

(H-12) 

0(0)   -       j    F(y)eiky'in*dy. (H-13) 

This is the standard equation for obtaining the directional response of a line source as a func- 
tion of angle.   Since  k = 2TJ/\, if s = - sin &/K, Eq. (H-13) becomes 

G(s) 1." Y) e dy. (H-14) 

This is identical to Eq. (E-2) except for the finite limits of integration and states that in the 
far field, the normalized directivity pattern G(ö) is the finite Fourier transform oi the rela- 
tive source strength distribution F(y).   Sources with the same ratio of length to wavelength and 
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with the same F(y) will have the same directivity pattern,   FCy) is the normalized volume- 
velocity distribution per unit length across the aperture. 

If we wish to have a pattern description independent of   aA, and vary with 0 only, define 

z   =   £ sin Ö. (H.15) 

Then Eq. (H-13) becomes, 

g(z)    = F(y) eJ   " a Z dy . (H-16) 

Let y/a = x/2, then dy = (a/2)dx and Eq. (H-16) may be expressed as 

i 

B(«)   =    [   fF^e^^dx. (H-17) 
-1 

If the weighted source strength distribution 

equals a new function of x, say f(x), then we have, 

i 

g(z)   =     I   f(x)eJ,TIX dx, (H-18) 
-' i 

which is referred to as the true radiation pattern or "pattern function."   The function  f(x) is 
termed the "excitation function" of the source.   Note that (y/a)  was chosen equal to (x/2)  and 
not (x)   as might be expected, so that the limits in Eq. (H-18), the range of integration, is 
(-1 < x < 1)   and not (-1/2 < x < 1/2).   This corresponds to the angular interval (-V? <& < -n/l) 
which provides the "accessible" portion of the pattern function.   It is so termed since it is the 
only portion of g(z)  that corresponds to a physically measurable value of the normalized sound 
pressure (the g(z) is a single-valued nonperiodic function of z).   Though   z > |a/\|  is possible, 
it corresponds to the "inaccessible" portion of the pattern and has significance for superdirec- 
tive sources, that is, sources whose main beam is narrower than that from a source of the 
same length having uniform excitation. 

Often, in trying to synthesize sources to obtain extremely narrow-beam directivity pat- 
terns, large minor lobes may occur in the inaccessible portion of the pattern.   This is caused 
by large amplitude terms in the expansion of the excitation function f(x)   describing the source. 
Theory has shown that there is no upper limit to the gain of a radiator provided no limit is 
placed on the amplitude of the continuous excitation function or its derivatives. 

An analysis in z-space is very convenient since two patterns generated by sources of dif- 
ferent length but with the same excitation function are represented by the same function extend- 
ing over different intervals.   It should be remembered, however, that in the real physical 
domain, which may be characterized as ö-space, the two patterns appear as different functions 
over the same angular interval. 

METHODS OF SYNTHESIS 

The problem of synthesis is one of finding how to specify pattern functions with desirable 
properties in the accessible region and which can be achieved by practical excitation functions. 
There are two techniques which may be usefully applied to this problem and which result in 
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approximaice solutions.   The first is a series expansion method whose accuracy depends on the 
number of terms considered.   The second is based on the Fourier integral transform where 
the degree of approximation depends on the range of integration. 

If we expand both g(z)  and  f(x)  in a finite series of weighted elementary functions, i.e., 

g(z)  =   £ a„ s/'nO) (H-19a) 
n 

f(x)   =   £ bn V) {H-19b) 

and require that the corresponding coefficients be equal for every value of the discrete vari- 
able   n(an = bn), then substituting Eqs, (H-19a) and (H-19b) in Eq. (H-18) leads to the condition 
that 

i 

^n(z)   =    |   ^„('Oe'"" dx. (H-20) 

The utility of functions satisfying Eq. (H-20) depends on whether the coefficients may be deter- 
mined conveniently. 

One possible technique is to form an orthonormal set of functions out of a known set of 
*P 's.   If g(z)  is expanded as a finite sum of these functions, this will be the best approximation 
in the least squares sense.   Thi^ is a desirable approximation if one is interested in maximiz- 
ing the directivity factor of the source and can be the basis of synthesizing for maximizing the 
directional gain of a source.   The '/'„'s themselves were not made orthogonal because it could 
not be assumed that any particular set of functions   [i/-n( z)]   will simultaneously satisfy the 
conditions of orthogonality and Eq. (H-20) for all values of «A. 

Approximating in the least square sense is seen to be appropriate if it is desired to pro- 
duce a specified signal on the principal axis with minimum energy in the sidelobes.   This may 
be attributed to the finite Fourier series representation being the best approximation on the 
basis of energy.   There are other criterion which may be used.   For example, if one is inter- 
ested in having minor lobes of low amplitude, approximation in the Tchebycheff sense may be 
more desirable.   This permits distinguishing a weak source located on the principal axis from 
stronger sources located off the axis, and states that for a given number of sidelobes, the 
maximum value of a minor lobe may be made smallest if all lobes are of equal amplitude. 

There are basically three sets of complementary functions which satisfy Eq. (H-20) and 
may be uaeful expansions of the pattern and excitation functions.   One is where   f(x) is 
expanded in a Fourier series, while the other two provide power series or polynomial expan- 
sions of the excitation function. 

If 

),    /    ^ f1\       in,'X 

then for a general type of line source, the pattern and excitation functions can be expanded in 
series of the form 

CO 

^Z>    =     Z.   a"        ^(zV    n) (H"21) 
n= - co 

and 

f(x)   =    J^ein™. (H-22) 
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Equation (H-22) is recognized as the complex form of the Fourier series and infers that a con- 
tinuous phase shift of the form   e'""* is applied to a uniformly excited line source.   This, in 
effect, steers the main beam so that it is centered on the value  z = -r. rather than on z = 0. 
The complete pattern is a superposition of   sin z/z beams steered toward different directions 
in z-spate.   If n is sllowed to exceed  a/A., the main portion of the nth beam will be steered 
into the inaccessible region of the pattern and only the "sidelobes" will contribute to g(2) 
within the accessible region. 

For an f(x) that is finite and continuous over the full length of the source, its partial-sum 
expansion in terms of the Vs  should converge in-the-mean.   Then a realizable pattern func- 
tion may be expanded in the corresponding set of i//n's. 

Directional sources may also be synthesized by means of the Fourier integral transform 
utilizing the knowledge that in the far field, the excitation function and its corresponding pat- 
tern function are a Fourier transform pair, indicated without proof in section E.   This method 
can then make use of the inversion properties of the Fourier transform, its limitation being 
that g^z), the "desired" pattern function, can be specified in advance only over the accessible 
region of the pattern. 

With reference to Eqs. (E-2) and (E-3), by letting   z = (aA) sin 6,   Cy/a) = (x/2), and 
(a/2)F(ax/2) = f(x), for reasons given earlier, the equations become 

0= 

8,(2)   =    jf(x)ei,riXdx. (H-23) 

CD 

I f(x)    = g1(z)e dz. (H-24) 

Equation (H-23) is equivalent to Eq. (H-18) except for the limits in integration.   It will be 
remembered that if one member of a Fourier transform pair, say gjCz), is of finite length, 
the other,  f(x), will be infinitely long.   If   g^z) is specified to be different from zero only in 
the accessible interval (-aA < z < aA),   f(x) cannot be zero outside the interval (-1 < x < 1) ^ 
and the achieved pattern, g(z), differs from the specified pattern,   g,(z), by an "error pattern," 
Ag(z), given by 

error  pattern   =   Ag(z)   =    gjfz) -   g(z). (H-25) 

Due to the finite range of integration of Eq. (H-18), the Fourier transform method may be 
insufficient for pattern synthesis.   However, it is of value in synthesizing sources with oddly 
shaped patterns and for problems where a series solution may prove too laborious. 

EFFECT OF FINITE AvPERTURE WIDTH 

The effect of limiting the size of the aperture is to introduce sidelobes in the radiation 
pattern.   The more smoothly an aperture distribution goes to zero at the edges of the aperture, 
the smoother will be the radiation pattern.   "Smoothness" in a radiation pattern implies not 
only an absence of sidelobes, but also an absence of sharply defined beams.   This is illus- 
trated in Figures (H-7) and (H-8).   A finite aperture width implies sidelobes, which may be 
minimized but only at the expense of broadening the major lobe. 

Two important aperture distributions (excitation functions) in spatial element analysis 
are the 

Gaussian Distribution 

f(x)   =   e-™2 (H-26) 
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Figure H-7 - Examples of  the relation between the field at the edges of 
the aperture and sidelobes   in the   radiation pattern 

Figure H-8 - Examples of the relation between the field at the edges of 
the aperture and sidelobes in the radiation pattern 

and 

Rayleigh Distribution 

f(x)   =    xe (H-26) 

These distributions possess the very useful property of having self-reciprocal Fourier trans- 
forms.   That is, if the aperture is of infinite width, the radiation patterns will have the same 
form as the aperture distributions, with the variable x replaced by  z (or $).   The waveforms 
are shown in Figure (H-9).   That the Rayleigh distribution is proportional to the derivative of 
the Gaussian distribution explains their relative properties. 

In practical cases, ..he aperture width will not be infinite, the radiation pattern will develop 
sidelobes, and the reciprocity will be lost.   Since a true Gaussian pattern has no sidelobes, a 

< 
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GAUSSIAN DISTRIBUTIOK 

RÄYLEIQH DISTRIBUTION 

Figure H-9 - Self-reciprocal transforms 

Gaussian-like distribution (distinguished by having most of its amplitude at the center of the 
aperture) is suited for producing a pattern with small sidelobes although this does not give 
the narrowest beamwidth for a given sidelobe level.   In general, antisymmetrical patterns 
tend to approximate the Rayleigh distribution and can be interpreted in a similar way as was 
the Gaussian function.   For a finite aperture, the Gaussian distribution and its corresponding 
pattern are given in Figure (H-10).   Whether a broad or narrow Gaussian distribution is desired 
would determine applying either high or low values of excitation, respectively, to the edges of 
the aperture.   A measure of the width of the Gaussian distribution is the taper ratio which is 
defined as the ratio of the field strength at the center of the aperture to that at its edge. 

F(x)=  e-S-Sx^ ae'U«») 

b 

io/1 y 
/ 

\K      UNUSED 

.-< >.^   fc 
-1 0 + 1 

-I APERTOXE. K- 
Figure H-10 - The effect   of a finite aperture upon a Gaussian 

distribution and its corresponding radiation pattern 

EFFECT OF ELEMENT  SPACING 

A method of transmitting sound or receiving sound unidirectionally is by means of a linear 
array of small nondirectional transducers referred to as point elements.   If the elements are 
directional, the directive properties of the array may be determined by considering the direc- 
tive properties of both the individual elements making up the array, and an array of Isotropie 
radiators at the location of the point elements. 

For the array of (2N+ 1)   arbitrarily spaced point elements shown in Figure (H-ll), the 
discrete form of the pattern function, Eq. (H-ll), is 
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Figure H-11 - A linear array of 2N + 1 
unequally  spaced elements 

G2Ntl(e)   = 
p(0) nn.lt 

j kdn  sin Ö 

P(O) 
I]    *n 

(H-27) 

where dn is the distance from the nth element to the center of the array.   If a relative source 
strength or excitation coefficient, bn, is defined as 

L    *n (H-28) 

then Eq. (H-27) may be written as 

N 
n /fl\   -     V  u      ikdr. ■in e 
12N+i(ö)    =       ^    bne (H-29) 

Note that the directional characteristic is normalized for unity in the broadside direction, i.e., 

GaimW   =   1- (H-30) 

With symmetrical excitation, 

K  =   b.n (n =  1.2,....N) (H-31) 

Eq. (H-29) becomes 

G2N+l(ö)    =    bo  +   2   Z]   bn cos   (kdn   sin  ») • (H-32) 

If the elements are uniformly spaced a distance d apart, then  dn = nd, and the sidelobe 
level and beamwidth may be controlled by varying the element excitation.   Equation (H-29) 
may be regarded as a Fourier series expansion of the radiation pattern where the b 's are 
determined in a least mean-square sense, i.e., are Fourier coefficients.   A general result of 
uniformly spaced arrays is that the sidelobe level may be reduced by decreasing the aperture 
excitation toward the extremes of the array, as indicated earlier.   This reduction is obtained 
at the expense of the array beamwidth. 

If the elements are nonuniformly spaced, dn will not be a rational multiple of some unit 
distance.   Hence, the nonuniformly spaced array is characterized by spatial frequencies which 
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are not related by integers and where the bn-s must be determined by a non-mean-square 
error criterion. 

Ar. unequally spaced array has ^f^ in 
equivalence between amplitude tapering of ^ ««"O"»1^^fce° YM mS be used to reduce side- 
a nonuniformly spaced array. Hence, non^0J" ^f^f ^^ ^Lut 2/NT times the main 
lobes.   Use of perturbation methc^s can «^e "« ^^^ ^^ the beam. 

ÄÄ'S lole. 2N
T; LMevethtr^uction implies retaining uniform excitation, 

spacing.   However   the more "^f^prop method for making an analysis of such 

physlMUy e^t but is u^d merely lor amlysls ol unequally spaced arrays. 

ADDITIONAL DESCRIPTIONS 

in general, directivity, both <n transmitting and on -em^ is d^e^ on tje^^ 
the sound -./avelength to the diu.   .»ions of the radiator    "J^ ^^X" 3UCer response 
to the dimensions, the sound is emitted u"^™ ? ^ *" J^f dimensfons are large compared 
will be independent of the direction of ^^^^JiÄd   "luTe dfr^tiomü.   Useful 
rasTefoA rÄ^e^SÄSl SeSÄÄ directivity factor and direc- 
tivity index. 

The directivity factor (D.F ) i*^™^*^***^^ 
sure of the radiated sound in a free field at » "»O*eo^ °" ^"^er all directions. The 
to the intensity or mean square Pressure a  ^«f^"^ todivlrge spherically from the 
distance must be sufficiently great so that Ue u^^^"ft "^ loiuSl passing through a 
effective acoustic center »^^«X^tegrauL thfnoS^^^ intensity ln over 
ÄrLrof^sphe/e l^^X^^.   The directivity factor .nay then be 
expressed as 

W IO 
D.F    = —  • (H-33) 

/XT   oo\ «-Kan Vkonnrnpn (H-33) then becomes 

47Tr2 p0 

DF-   = —- • (H~34) 

s 
p2 dS 

For a line source of length (a), symmetrically excited, the directivity factor may be 
written in the form 

D.F. ./x 

1 
a/K 

, ' (H-35) 
g2(z) dz 
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The problem of increasing the directivity factor of a line source with a given ratio of  a/K is 
equivalent to decreasing the integral 

J     g2(z) dz (H-36) 

subject to the normalization requirement that g(O) - 1.   Using expansions (H-19a) and (H-19b) 
and condition (H-ZO), for a finite number of terms N, maximizing the directivity factor becomes 
one of minimizing the integral 

£   an  ^nO) dz (H-37) 

subject tu the requirement that 

N 

L 
0 

In general, the problem of minimizing Eq. 
multipliers 

an tjz)   =   1. (H-38) 

(H-37) is done using the method of Lagrangian 

The directivity index (D.I.)  is the expression of the directivity factor in decibels; thus, 

D.I.   =   10 log10 n.F. (H-39) 

For a linear array of point elements, uniform excitation is necessary to produce the maximum 
directivity index (MDI)  for element spacing of integral-half-wavelengths.   The maximum direc- 
tivity factor is then numerically equal to the number of elements N (even or odd) in the array, 
i.e., 

(D.F.), N 

Figure H-12 - Rectangular plots of 
a typical (a) difference pattern and 
(b) sun pattern 

dA =  n/2 (n =   1,2, )• (H-40) 

For other values of element spacing the MDI   is not 
obtained with uniform excitation.   There is little dif- 
ference between the MDI  and the directivity index dve 
to uniform excitation  for element spacings greater 
than a half-wavelength.   However, for  d/'K < 1/2 there 
may be a significant improvement in the directivity 
index in going from uniform excitation to MDI  excita- 
tion.   The patterns due to the latter are superdirective 
and obtained only at the expense of requiring out-of- 
phase excitation and relatively large range o! amplitudes. 

Certain applications may require special types of 
directivity patterns, such as a difference pattern. 
Whereas the sum pattern exhibits even symmetry about 
a line drawn perpendicular to the radiator aperture at 
its midpoint the difference pattern exhibits odd sym- 
metry about the sarne axis.   A comparison is shown in 
Figure (H-12) for a line source.   A sum pattern usu- 
ally will have one major lobe in the direction of the 
principal axis while a difference pattern has two equal 
lobes with a null in the direction of the principal axis. 

Combinations of sum and difference patterns are 
used in sonar and radar systems to improve the accu- 
racy of bearing measurements.   The ei-ror signal 
obtained is primarily determined by the slope of the 
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difference pattern in the vicinity of the origin.   To enhance the sensitivity to small changes in 
angle, it is necessary that the slope be as steep as possible.   For sum patterns the influencing 
properties are directivity index, beam>vidth and sidelobes.   For difference patterns, slope and 
sidelobe level are significant for determining angular sensitivity.   If the sidelobes are too 
large, false indications of target direction may result in the presence of multiple targets. 

Consider the pattern function g(z)   in terms of the excitation function f(x)  for a line source, 

i 

g(z)   =   j    f(x)ej":"t dx. (H-18) 

The slope of this pattern, with respect to z is given by 

i 

^f    =    Tr\    jxf(x)eJ"2XdX. (H-41) 

By setting z= 0, the slope at the origin is 

dg(2) 
dz 

TT    I       jxf(X ) dx . (H-42) 

z=0 

If  f(x) is subjected to a constraint such as constant power radiated, that is, 

i 

f    |f(x)|2dx   =    a constant. (H-43) 
. i 

then by employing the method of the calculus of variations the excitation function which maxi- 
mizes Eq. (H-42) may be determined.   If the constant is arbitrarily set equal to one, a uniform- 
phase distribution function given by 

f(x)   =   -j   1.22x (H-44) 

will give rise to the pattern with maximum slope at the origin.   Any uniform-phase distribution 
other than the linear distribution (H-44) will result in a smaller slope at the origin.   The maxi- 
mum slope pattern and the excitation function corresponding to it are shown in Figures (H-13) 
and (H-14), respectively.   The term "uniform phase" is seen not to be completely accurate 
since the phase of the difference pattern changes by 180°.   However, except for the 180° phase 
reversal, the phase of the pattern and corresponding distribution is considered constant. Since 
the linear excitation function gives rise to the maximum slope pattern, the slope may be used 
as a figure of merit with which to compare slopes of other uniform phase, constant power dif- 
ference patterns.   The maximum slope pattern may not be the most desirable pattern to use in 
that the sidelobe level is quite high.   Thus, a compromise must be made between slope and 
sidelobe level for angular error sensitivity. 

In section F, the  /f-Transform was shown to be useful for expressing discrete signals 
just as the Fourier Transform was for expressing continuous signals.   The excitation distribu- 
tion in the discrete elements of a linear array may be considered as the sampled values of a 
continuous function.   Known relations in z-Transforms developed for sampled-data systems 
can be used to simplify linear array analysis.   It was shown earlier that an ays may be repre- 
sented mathematically by polynomials and that Important characteristics of the radiation pat- 
tern, such as the location and level of sidelobes and the beamwidth, can be analyzed in terms 
of the properties of the polynomials.   However, these are approximate and often quite tedious 
to detertnir.e since the polynomials cannot generally be put in closed form.   By employing 
Z-Transform theory, the array polynomial can be expressed in closed form permitting charac- 
teristics to be determined more conveniently. 
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Figure   H-13 - Maximum slope pattern 
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Consider a linear array of N equally spaced 

elements.   From Eq. (H-29), the polynornial for 
the pattern function associated with the array can 
be written as 

-i 1 1 1-     . 
0.2    0.4    0.6    0.8     10 3N(z')   =   2]   bn(z')-n, 

where 

Figure H-14 -  Excitation  function   cor- 
responding  to  maximum   slope  pattern 

(H-45) 

(H-46) 

It the envelope cf the amplitude distributions of 
the excitations in a linear array can be described 

by a continuous function  f(x) within the range  o < x < (N- l)d, then the excitation coefficients 
in Eq. (H-45) can be written as 

b0  =   f(0) 

f(d) 

bN-l    =     f[(N-l)d] . (H-47) 

Equation (H-45N, then becomes 

G
N(0   =    E   f(nd)(l')n -   ^   f(nd)(z')"n. 

For equal amplitude excitation in the two end elements, 

GN(z')   =    [l   ♦   (z')-(N-l)]   K(z')  t   fCOXz')"^-^ 

(H-48) 

(H-49) 

where F(z') is the z-Transform of the function f(x), 
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F(z')    =    Z{f(x)}    =    2Z    f(nd)(z')' (H-50, 

G (z')  in Eq. (H-49) is expressible as a closed function of   z', instead of a polynomial of N 
terras.   Note that increasing the number of elements,  N, in an array does not increase the 
complexity of the expression for Gn(z'). 

EFFECT OF AMPLITUDE AND PHASE  ERRORS 

The design of an array requires that individual element amplitude and phase tolerances 
be maintained to achieve specified beamwidths, sidelobe levels, and difference pattern slopes. 
The effect of errors on the radiation function will be discussed briefly. 

In general, the presence of errors in an aperture distribution (or excitation function) will 
cause some redistribution of directions in which the energy is radiated.   This results in a 
reduction of the energy radiated along the main axis relative to the total radiation.   If the 
errors vary slowly across the aperture, radiation components at small angles to the axis will 
develop, influencing the beamwidth and beamshape.   Rapidly-varying errors will produce side 
radiation away from the main beam, but the increase in fine structure may not affect the radia- 
tion function appreciably. 

Phasing errors generally affect the D.I. , the sidelobe levels, and play an important role 
in determining bearing accuracy.   If an array has the proper phasing in a specified direction, 
a random perturbation of the phasing will cause the intensity of the field and directivity index 
to decrease.   Minimization of sidelobe levels may be attained by varying the vector amplitudes 
across the aperture in a predetermined manner, referred to as amplitude tapering.   This is a 
slowly varying effect and results in changes in the beamwidth.   If random phasing errors or 
amplitude errors a:    introduced in the excitation function, the symmetry necessary for mini- 
mization is destroyed and sidelobe levels increase. 
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I.    CIRCUIT  FILTERS 

1.    INTRODUCTION 

Previous analyses have been concerned with descriptions of simple circuit and spatial 
elements — with a comparison of some of the analogous relationships which exist.   The avail- 
ability of numerous methods of describing these elements was noted along with the concept that 
the nature of the input played an important role in determining which description was to be 
employed.   Additionally, the purpose of the analysis, that is, whether the description intended 
to describe a physical process, or facilitate computation in analysis or synthesis or to make 
the realization of a physical element in some sense easier or more economical, was also dis- 
cussed.   Practically, the elements described are subjected not to a single input — or even a 
single class of inputs — but to a wide variety.   Some of the inputs contain information which 
should be preserved, and others discarded.   In its broad sense, "filtering" represents an oper- 
ation on the inputs in such manner as to discriminate against the interfering or undesired 
inputs while pi eserving the desired information.   In view of the wide range of inputs — desired 
and undesired — and the range of functions, filters perform an impressive array of functions. 
Analysis procedures and instrumentation are constantly evolving.   It is not proposed to review 
all of these in detail.   Instead, discussion will be made of representative cases in order to 
illustrate in a sense, philosophical, rather than technical aspect of "filtering" operations. 
Although filtering represents perhaps the simplest operations with circuit elements, in deter- 
n.ining the correct design, and in selection of the proper criterion for a particutctr application, 
it must be recognized that even for simple operations there may pracacaUy be complex com- 
promises to reconcile. 

A "classical" frequency filter is intended to separate two classes of signals whose spec- 
tra do not overlap.   As has been previously discussed, time boundaries imposed on signals 
have spectra of large width and physically realizable filters cannot effect absolute separation. 
In practice, we try to make the ratio of output energies of the desired and undesired signals as 
large as possible.   The classical filter specification does not take into account statistical 
properties. 

There are two basic methods of designing such filters.   The oldest method is based on 
image-parameter theory yielding Zobel filters.   The other method is based upon insertion loss 
theory and gives the Darlington filters.   Image-parameter methods are based on the study of 
elementary networks in terms of their image transfer constant and image impedances; the in- 
sertion loss method is based upon prescribed transmission characteristics.   Though the inser- 
tion loss method is more involved, both theoretically and in computation, than the image method, 
it is not only more flexible but also a better approximation to the physical situation. 

A class of filters of increasing importance are those necessary to separate a given signal 
from random noise whose spectrum overlaps that of the signal.   In these cases, statistics of 
the signals plays an important role in the determination of the filter.   It is necessary to select 
a suitable criterion and to determine how much noise may be accepted and how much signal 
energy may be rejected to achieve the desired result.   This problem may be approached from 
two different points of view: 

An extraction filter may be designed to recover or extract the message from a message- 
noise complex with minimum message distortion.   A suitable criterion for this problem involves 
minimization of the rms difference between actual filter output and message.   This problem was 
investigated by Wiener (1949) for a continuous, time-invariant, linear filter having infinite 
memory time (observation time) operating on a stationary random signal.   Zadeh and Ragazzini 
(1950) then extended Wiener's work for a time-invariant linear filter, having specified memory 
time, for use with signals consisting of both a nonrandom polynomial and a stationary random 
component.   They assumed the signal to be obscured by stationary random noise and their filter 
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mated by fairly simple apparatus, such as delay line filters. 

A nredetection filter may be designed to increase the possibility of detecting the presence 
of thl^^Sraered'output.   A useful criterion for this problem is maximization of 
the signal   (S) to noise  (N)  amplitude ratio: 

S instantaneous  peak   signal   amplitude 
"N   ~ rms noise  amplitude 

Snaüon of an optimum filler for nonwhite noise is usually quite complicated. 

2.   CLASSICAL FILTER 

An ima<rP filter is a network made to operate out of and into appropriate impedances so 

whole.   This permits different functions to ^^f.^^^^jXeilter Is assumed 
able in a complex system.   However, ^^^^„^^f^luefis generally terminated 

sare aws ^ntLTtraÄ in actuai operation with 
"Sve "rmTn^ o^s0   Even th'en  the filter usually cannot be designed with a minimum num- 
ber o! circuit elements, and in some cases, the solution proves impossible. 

The insertion loss method originated ^om eari   w ^^^^Z!^- 
oped independently by Piloty, Darlington, and Cauer in JO3;.   Th« de^8n ^ ^ ^    at {or each 

fSter is based upon prescribed transmission ^^f^^^^tfreTctive networks, there 
of the effective transmission characteristics that1S P^^81^^^ terminal networks 
exists a ladder configuration composed of ^ple elementtry reaci ^ method o{ 

which realizes it.   This kind of ^^^^{^1^1^ as compared to designing 
filter design, in spite of the greater computational *0^ «/^[^ leads

P
to designs which 

on an image basis.   The ^oderti net^ ^wro^bis^te^ctma le^ cafculations. 
are physically attainable in practice and ^h^ ""^^^"Sdesign of systems for pulse 
There are a number of characteristics which are reqm^ attenuation behavior, 

rrphS ^^^priaTbfh^^^^^ - illustrate the flexibility of this 
method of design, several filters will be described: 

(a)   Filters Having Prescribed Attenuation Requirements 

1    Power-term Filters- the attenuation behavior is represented, except for a con- 
stant, by a power series which corresponds to an attenuation curve beginning flat at   f - 0 and 
rising monotonically to infinity. 
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2    Trhebvcheft Filters - the attenuation characteristic is expressed, except for a 
constant   as a Tchebycheff polynomial, having a maximum slope in the transition between pass 
and stop bands    The attenuation versus frequency is allowed to oscillate or ripple between 
prescribed Umits in the pass and reject bands while the phase and transient response are dis- 
regarded    Ss, this design is useful when only the amplitude characteristic is significant. 

3.   Butterworth (maximally-flat) Filter - this is actually a limiting case of the 
Tchebycheff design where the ripple in the passband is reduced to zero    Phase and transxent 
resDonse are considerably better than those attainable with the Tchebycheff design.   The filter 
LSacterLed by considerable overshoot and undershoot when driven by a step function and 
is of primary value when a flat frequency response in the passband is desired. 

(b)   Filters Having Prescribed Phase Requirements 

1 Maximally Linear Phase (Bessel) Filter - the time delay throughout the passband 
and most of the transition band is a constant.   Thus, it has an excellent transient response 
wUh mTnimum overshoot; there is no region of constant amplitude in the Pas^nd^ For a 
given number of filter elements, the slope in the transition region is much less than the Butter 
worth and Tchebycheff designs.   This design is best suited for passing rectangular pulses or 
modulation envelopes and where overshoot or ringing is undesirable. 

2 Transitional Butterworth-Thomson Filter - the characteristics are between those 
for the linear phase and maximally flat designs.   Any degree of overshoot between the limits 
o7the two designs can be selected as the controlled characteristic with the remaining charac- 
tLiticrbSng ootim"zed.   Rise time and transition slope will also lie between the limits of 
he two d^sins    This design is one of the best compromises between selectivity and transient 

response and usually results in excellent correlation between calculated and realized 
characteristics. 

Although the insertion loss method is more involved, both theoretically and in computation 
than the image method, it affords greater flexibility in physical problems.   However   exten- 
sions of both methods have brought them closer together and towards a unified filter theory. 

3.    DETECTION OF A PERIODIC WAVE TRAIN 

There are two basic methods for detecting repetitive signals upon which a strong ergodic 
noise signal has been superimposed.   They are: 

1. Correlation Analysis, 
2. Comb Filtering 

These methods are nearly equivalent, the selection of one over the other will depend upon the 
Jpe of^epeUtive signal, the complexity of the instrumentation, and how the results are to be 
used. 

CORRELATION ANALYSIS 

The autocorrelation function ^(r)  of the additive mixture of a repetitive signal s(t)  and 
a random noise   n(t) is 

'/W7')    =    ^SSO)   +   ^NN(T>   +   ^NS(T)   +   *SN<^  • (I"1) 

Assuming the mean values of both components to be zero, the crosscorrelation terms in Eq 
fl-l" wiÜ vanish because of incoherence between signal and noise, and Eq. (1-1) simplifies to 

^S+N(T)  -   Vss(T) + *NN(
T

^ • (I'2) 
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Thus, the autocorrelation function of signal plus noise, both having zero means, is the linear 
superposition of the autocorrelation functions of each separately.   In a region sufficiently 
remote from the origin, how far depending upon the frequency range of the random noise, the 
absence of a periodic signal is indicated by an autocorrelation function of constant (or zero; 
value whereas its presence will be evidenced by a periodic variation.   The autocorrelation 
function for a sinusoidal signal in random noise is illustrated in Figure (1-1). 

The improvement in signal-to-noise ratio in correlation equipment increases with the 
time of operation of the correlator.   Therefore, theoretically an infinite signal-to-noise ratio 
can be obtained in the detection of a periodic signal in noise.   However, in practical measure- 
ment, correlation must be determined in a finite time.   A description of operation of a corre- 
lator may be given by statistical sampling theory.   Figure (1-2) shows a portion of a random 
function whose autocorrelation is desired.   Instead of shifting the function and performing a 
continuous multiplication, a set of samples a^ a2, a3,... are taken, spaced at regular inter- 
vals as shown, and a second set of samples bj, h2, h3, 
corresponding sample in the first set by time - 
approximate value 

is obtained, each sample trailing the 
The autocorrelation curve at T = r., has the 

44>VVwVh n(t) 

s(t)  +n(t) 

Figure I-1  -  Use of autocorrelation to discover a signal 
in a strong background of noise 
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Figure 1-2 - Determination of autocorrelation curve by statistical sampling theory 

W-'j) 
N 

N     /_! 
n= 1 

a„b„ (1-3) 

If the sampling period T, Is sufficiently long, then the samples a^ a2, «3, . . are practically 
independent of one another.   The complete autocorrelation function is obtained by varying the 
spacing (r) between samples.   The accuracy in determining «r) and the improvement in signal- 
to-noise ratio increases with the number of samples values. 

If the frequency of the repetitive signal is known, an even greater improvement in signal- 
to-uoise ratio can be obtained by means of crosscorrelation.   Using a reference signal of the 
same repetition period as the desired signal, the crosscorrelation function is 

(r) limit 
T  -.00 

2T 

T 

j   [sjCt)  +  n(t)]    [s2(t + r)]  dt U -4) 

tpuCT) + VW') • (1-5) 

Since  n(t) and s2(t)   are incoherent, 0N2(T) vanishes, and unless the repetition frequencies of 
Sl(t)  and  s2(t) are determined by the same source, ^12(T)  will also vanish.   When   g^t) and 
s,(t)  are incoherent some signal-to-noise improvement may be obtained by using a short- 
time approximation to ^12(T) , since the latter will not vanish.   The improvement of signal-to- 
noise ratio is dependent on the time available which may be established by spectral fluctuations 
or by perturbations in the propagating medium. 

When the reference signal s2(t) is comprised of a series of impulses whose period of repeti- 
tion is coherent with that of the desired incoming signal, s2(t)may be expressed as the Fourier 
series 

s2(t) 4L (1-6) 

where K is the strength of the impulse and T is its period of repetition, 
becomes 

Equation (1-5) then 

^(•o = YSI(T) (1-7) 

The result of crosscorrelation turns out to be precisely the desired signal s^t) except for the 
magnitude factor K/T, which can be adjusted to any desired value by changing K.   Therefore, 
crosscorrelation with a series of impulses having the same period of repetition as the signal, 
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1. removes the noise, 

2. gives the desired signal without distortion, 

3. gives the location of   sjCt) without any unknown displacement of the origin. 

The latter two results Illustrate the advantage of crosscorrelation over autocorrelation since 
the latter generally distorts the signal and does not give its location in time. 

COMB  FILTERING 

It was indicated in previous discussions that a periodic sequence of pulses could be repre- 
sented by a line spectrum provided that the pulse train was not bounded in time — that is, 
existed over an infinite interval.   When the pulse sequence was bounded, a continuous spectral 
distribution of energy resulted.   A finite sequence of pulses may be represented by a continuous 
frequent/ spectrum consisting of a finite energy distribution concentrated at the frequencies 
where line components would exist if the sequence were infinite.   The use of a "comb" filter 
which has passbands centered about harmonics ot the pulse-repetition-frequency permits an 
improvement in output signal-to-noise in comparison to processing a single pulse.   It should 
be recognized that signal-to-noise ratios alone do not serve as absolute performance criteria 
since such aspects as false alarms and incorrect dismissals are not directly indicated.   How- 
ever, signal-to-noise ratios when properly interpreted may be used at least in comparing 
some of the characteristics of various filtering operations. 

Transfer functions of optimum comb filters may be determined by us....    the generalized 
methods of Zadeh and Raggazzini, to be discussed later.   The physical operations associated 
with such filters consist of a cascade connection of a noise-shaping network, a single pulse 
filter, a nonfeedback type comb filter, and an output delay line.   A representative configura- 
tion is shown by Figure (I-?).   The transfer function of the noise-shaping network is equal to 
the reciprocal of the noise power spectrum Pn(^)-   The purpose of this network is to preferen- 
tially weight the components of the signal where the noise spectrum has its lowest values. 
Following this weighting network is a single pulse filter which is identical with a North filter 
which represents optimum processing of a single rectangular pulse masked by white noise. 
The comb filter sums the individual pulses of the pulse train and weights them in proportion   T 
their amplitudes. 

The passbands of the filters are centered about multiples of the pulse-repetition-frequency, 
and the spread of the signal energy is inversely proportional to the number of pulses in the 

Figure 1-3 - Filter maximizing signal-to-noise ratio 
at or after the trailing edge of the last pulse of a 
uniform pulse train 
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filtering methods.   This analysis, using peak signal-to-rms-noise as the criterion, shows that 
cross correlation is equivalent to the optimum filtering briefly described in the preceding 
paragraphs.   The correlator performs in the time domain an operation similar to the operation 
of the comb filter in the frequency domain.   The comb filter passes harmonically related fre- 
quency components, while suppressing bands of frequencies lying between the passbands.   Cor- 
relation involves multiplication of the incoming signal with a reference signal anr1 averaging of 
the multiplier output with a low-pass filter.   Only those frequencies present in boU the input 
and the reference signal result in a zero frequency multiplier output component that passes 
through the low-pass filter.   Decreasing the cutoff frequency of the low pass correlator filter 
corresponds to narrowing the width of the comb filter passbands.   If crosscorrelation is em- 
ployed, the reference signal is locally generated w. aout noise.   For autocorrelation, the ref- 
erence signal is the input signal delayed by one pulse-repetition period and consequently is 
perturbed by noise — and as a result, autocorrelation is inferior to crosscorrelation.   If the 
starting point of the incoming signal is not accurately known, then several correlation chan- 
nels each having a different value must be employed, or it is necessary to store the signal and 
search through a range of   (r) values with the single channel.   However, the adverse effects 
on comb filters caused by impulsive disturbances may be greater than for the correlator. 

Although more detailed analyses of processing methods may be made, the interpretations 
of the analyses must be made with care.   Output signal-to-noise ratios which have been used 
in establishing performance characteristics may inadequately describe the methods when 
employed in a system.   Additional considerations which may be more difficult to handle ana- 
lytically involve determining false alarms, incorrect dismissals, particularly when the inter- 
ference may consist of disturbanceo having non-Gaussian characteristics. 

COMPARISON OF ANALOG AND BINARY INTEGRATION 

The detection of repetitive signals in noise may be improved by integration techniques. 
Regardless of the method used in any particular integration scheme, a fundamental require- 
ment which they all have in common is that of a suitable memory.   This memory must be able 
to accept and remember with sufficient accuracy a number of signals contaminated by noise. 
When a number of such sequences have been added while stored, their sum may then be ex- 
tracted and examined. 

The method for obtaining the desired signal storage may be either analog or digital in 
nature.   Many of the basic analog integrating devices integrate by remembering the waveform 
of the signal and by using successive samples to obtain improvement.   For example, if a suc- 
cession of impulses are applied at intervals   at to a single RC network, then the response Eout 
at the time the nth  signal is applied is 

_, 1    L. ^ -At/RC _       -(n-l)At/Rc1 
Eout   =    Re  LE"   '  En-ie +---+E1e

l J. (Hi) 

The law of addition here is a weighted linear one in which the effect of each signal is exponen- 
tially weighted.   When periodic signals are applied to regenerative delay-line integrators, the 
delay is made equal to the repetition interval of the signal and the summation again follows 
the law 

*out   =   En *£„.!«-%   •••  +E1e-(n-1)" (1-12) 

where a is the attenuation in nepers and is greater than zero.   Extending this method to other 
elements, RC networks, regenerative dealy-line loops, narrow-band filters, and storage tubes, 
all have the same general law of addition, i.e.. 

IW   =    L Eqe-(n-q)y (1-13) 

If we were to calculate the output probability distribution when n mixed signals are added in 
accordance with Eq. (1-13), we would find that the signal-to-noise improvement is a function of 
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n, the number of signal-plus-noise additions, and y, the exponential weighting factor.   Specifi- 
cally, when successive repetition intervals are added, the noise increases roughly as the square 
root of the number of additions, and the signal increases as the number of additions.   Hence, 
the relative signal-to-noise ratio should increase as the square root of the number of samples 
added.   There are several disadvantages to analog integrators.   The most important is that they 
require a large number of memory elements to store the waveform of the signal, thus making it 
difficult to realize long memory times. 

Binary integration requires fewer memory elements since signals are quantized into two 
amplitude levels ii»d in time between fixed time markers.   In the process of quantizing, if the 
complex signal and noise waveform between given time markers exceeds a predetermined 
amplitude, a standard pulse is generated at the end of the interval.   If the threshold is not 
exceeded, no pulse is generated.   The probability of obtaining a standard pulse can then be 
determined from the probability distribution function for the given complex waveform.   This 
method of integration then becomes a process of adding signal waveforms in successive repe- 
tition intervals. 

4.   PREDETECTION  FILTER 

INTRODUCTION 

The primary purpose of a predetection filter is to enhance the strength of the signal rela- 
tive to that of the noise and thereby facilitate detection. The form the filter takes will depend 
upon the information about the signal and noise that is available. 

In most practical situations, information available is incomplete and it is necessary to 
maKe assumptions regarding the character of the noise and to select an adequate criteria from 
the standpoint of accuracy and convenience.   Two types of predetection filters are the North or 
"matched" filter and the Zadeh-Ragazzini optimum predetection filter.   Though the matched 
filter is actually a limiting case of the latter, it will be discussed separately due to North's 
theory pioneering the field of optimum filters.   It also provides a good foundation for evaluat- 
ing more complex predetection filters. 

MATCHED  FILTER 

The correlation of one waveform with another can be carried out by passing the first v/ave- 
form through a linear system whose impulse response is the time reverse of the second wave- 
form and observing the output at a certain instant of time.   If the two waveforms are identical, 
the filter is said to be "matched" to the input waveform.   The filter output as a function c' time 
is then the autocorrelation function of the waveform.   Generally speaking, to distinguish .tmong 
a group of signals (including the absence of a signal) masked by additive white Gaussian noise 
is equivalent to a coherent detection in which integrals   Ik of the form 

j   y(t)xk(t)dt d.^) 

are compared with each other for given thresholds.   In these integrals, y(t)   is the received 
signal and the x1((t)   are the various signal waveforms in the absence of noise.   If the integral 
is computed by multiplication and integration, the detection process is called "correlation 
detection."   If the integral is obtained as the output of a linear filter at a given time, the proc- 
ess is then referred to as "matched filter detection."   The two processes are, in a sense, 
equivalent. 

To know whether a signal plus noise or just noise alone is present at a certain instant of 
time, say t =  t0, we require the filter output at that time to be greater when x(t)   is present 
than if it were absent.   This is usually accomplished by making the instantaneous power in the 
filter output containing a signal at  t =  tD as large as possible compared to the average power 
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in the noise at that time.   If a mean-square criterion is used, for the case of additive white 
noise the signal-to-noise ratio p in the filter output may be expressed as 

p  - T^ (1-15) 

where E is the tota.1 energy in the signal and N0 is the power spectrum of the noise, and is a 
constant.   The equality in Eq. (1-15) is obtained for a filter whose impulsive response has the 
form of the image of the signal to be detected.   That is, if HCJCJ) is the complex transfer func- 
tion of the element, then p is a maximum at time  t0 for a signal x(t) when 

Hfj^)    =    X'do)) e^"1» . (1-16) 

The transfer function is the complex conjugate of the Fourier spectrum of the signal multiplied 
by a phase factor exp (-ja)t0).   Equation (1-16) is referred to as the Fourier transform criterion 
and the filter is called a matched filter. 

Although the transfer function depends upon the instant of observation t0, the correspond- 
ing value of the maximum ratio is independent of time and will thus be the same for all values 
of time for which H(jw) satisfies Eq. (1-16). For pmax to be valid at any time t0 desired, we 
must obtain a physically realizable filter when to is inserted in Eq. (1-16). The necessary 
condition for realizability when dealing with real signals is that all of x(t) must have entered 
the filter before the time  t0 when the filter is expected to give maximum signal-to-noise ratio. 

When Eq. (1-16) is satisfied, the output signal y(t)  will be, using Eq. (G-21), 

a 

y(t)    =   -^ J    IXHaOl      e da.. (1-17) 

This however, from the Wiener-Khintchinetheorem, is the finite autocorrelation function of the 
input signal displaced by the time to.   Therefore, the results of correlation analysis on arbi- 
trary signal waveforms mixed with white, Gaussian noise may be deduced from the theory of 
matched filters. 

In a matched filter, the product of the "widths" of the matched-filter output waveform and 
associated spectra should be a constant of the order of unity, the exact value of which depends 
on the definition of "width" (see section A.II-3).   This means that the width of the signal com- 
ponent at the matched filter output cannot be less than the order of the reciprocal of the signal 
bandwidth.   In simple detection problems, for the case of white, Gaussian no'    . all signals 
having the same energy content are equally effective.   Peak power, time dura..- jn, bandwidth 
and waveshape of the signal, per se, ao not affect the output signal-to-notse ratio.   However, 
for the case of bandlimitcd white noise of fixed total power, of all signals with the same energy, 
the one with the largest bandwidth is the most desirable.   In system applications such as sonar 
and radar,  it is often necessary to include requirements for range accuracy, resolution, 
and ambiguity, in addition to detection under noise-limited conditions.   The idealized require- 
ments of accuracy and resolution dictate a large bandwidth, while minimizing ambiguity re- 
quires a peak in the output of the matched filter at the time corresponding to the unknown delay 
and zero everywhere else.   The width of the peak must be sufficiently small for multitarget and 
multipath situations. 

If in addition to being delayed, the signal is also shifted in frequency by doppler effects, 
the receiver should contain a bank of matched filters.   The detectability of the signal is still 
governed by the signai-to-noise ratio, Eq. (1-15), obtained without doppler shift.   For multiple 
targets, each target represented at the receiver input should excite only the filter in the 
matched filter bank which corresponds to the target doppler shift (velocity) and should cause 
a sharp peak to appear in this filter's output envelope only at a time corresponding to the delay 
of the target, and nowhere else.   The response of a filter at time (t)  to a nondoppler-shifted, 
nondelayed signal, when matched to the doppler-shifted signal, is the real part or envelope of 
the complex Fourier transform 
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x(t.<f)   =    2     f F(j2rrf)F* [j2<f- ',»)] 
j 277 ft 

df (1-18) 

for f > 0 . where $  is the doppler shift and   F(j277f)  is the Fourier spectrum of the received 
signal.   Equation (1-18) is the joint autocorrelation function or ambiguity function, and for sig- 
nal detectability its envelope   \x(t,<p)\  is required to be large at t = o   if * = o, and small 
otherwise.   By applying the time-bandwidth product relationship to the ambiguity function, we 
find that the "width" of the peak response cannot be less than the order of 1/TW.   Thus, in order 
to obtain a very sharp central peak it is necessary, but not sufficient, to make the TW  product 
of the signal very large. 

In practice, single target conditions are not encountered, making it necessary to consider the 
relationships among signals.   Specifically, the various signals should be distinguishable so 
that the overall probability of error in reception is minimized.   For the special case of binary 
transmission, it turns out that if the two signals are a priori equally probable, one should use 
equal-energy anti-podal signals, i.e.,  xrft) = -x2(t).   For the band-pass case in which the 
carrier phases are unknown, an optimum system is one where the signals are "envelope- 
orthogonal."  Another method is using signals which are rectangular bursts of sine waves, the 
sine-wave frequencies of the different signals being spaced apart by integral multiples of  l/T 
cps, where T is the duration of the bursts.   A third method is using code symbols in the form 
of orthogonal wide-band signals having the same energy per symbol.   It is not essential that 
the symbols be strictly orthogonal but only that the interaction energy be small and not 
concentrated. 

Since approximately 2Wr   "numbers" are sufficient to describe a signal which has an effec- 
tive time duration T and an effective bandwidth w, a filter can be synthesized by 2WT elements 
or parameters.   A form of matched filter is the tapped-delay-line filter.   First, to illustrate 
the properties of matched filters consider the system of Figure (1-5).   A signal, x(t), for some 
duration T, may be considered to be generated by applying a unit impulse at t = 0  to a linear 
filter whose impulse response is X(T) .   To this is added white noise n(t) of power density N0. 
The total signal  y(t) = x(t) + n(t)  is then passed into a filter, mate1 ed to x(t), whose output 
is denoted by g(t).   For the class of signals where th3 signal-generating filter can be repre- 
sented as the tapped-delay-line spectrum shaper of Figure (1-6), the spectrum X(j27rf)   of the 
signal will have the form 

X(j277f)   =   F(jfrrf)   2]   Gi(i27Ti)e 
i'O 

jSntAi 

(1-19) 

where A,   is the delay associated with the (i)th terminal.   A filter matched to this signal may 
be obtained by replacing the G/s and  F(.i27rf)  by their complex conjugates and applying the 
input at the end of the delay time, i.e., at the terminal An.   The transfer function H(i2nf)  of 
the tapped-delay-line matched filter will then be 

H(j27rf)   =   F*(j^f)   2]  G'(j2rTf)e 
i'O 

j2^f(A„-A.) 
(1-20) 

8{t)__ '<(t)^7^_.y(t). 

SIQHAL-OENERATINO 
FILTER 

g(t)ii 

MATCHED FILTER 

n(t) 

WHITE NOISE 

Figure 1-5 - Illustrating the properties   of matched filters 



156 

INPUT JELAY  LINE 

eo(J2wf) fi^jarrf) B2(j277f) •       »      • 

minD 
3  

Gn(j27Tf) 

] 
i F(j2nf) OUTPUT 

Figure 1-6 - A tapped-delay-line   spectrum shaper 

which, when compared with Eq. (1-19), becomes 

H(j27Tf)   =   X*(2rrf)e 
■ j 2" f An (1-21) 

F*(j27Tf) = F(j2rrf)   and G^ j2«f) - G.( j ^f).   ^^;f"l^liations wh|re the transmitter and 
forJn signal generation and matching i* quite e^entinsituat10ns where t        a       ^^ 
receiver are physically at the same nation   The various res rictior^ y   ^ ^ 

be accounted for by adjusting the characteristics, i.e.,   n^nf), G^j^n 
of the filter. 

ZADEH-RAGAZZINI OPTIMUM PREDETECTION FILTER 

in evaluating the performances of various elements   Jt is necessary ^^e ^^e dUfer- 

snces and similarities between the en ena »*f'™*'™*^C™?™tiB ^ sum of a signal 
(a network whose function is to separ^e ^ of its to 

s^t) anda00136,"!^1^ "^".JVm resoectively, andiftheout^^^ s0(t) + n0(.t) is 
rÄrtoÄSIs^Äe rÄÄr8iS, then the filter is said to be opti- 
mum when using the mean-squara error criterion if 

H  [V (t)  + n0(t)  -  s iCO] dt 

1/2 

a mimraum . 
(1-22) 

The only assumption made is that s^t)   and n^t)   are stationary and independent. 

A predetection filter intends to facilitate ^ ^f ^^^ 

Sl(t). Consequently  ^-f^f^sfSonenf  ^   ^m^z^witfrTspect to a con- 

zero signal/the quantity to be maximized by the filter is 

; 

1 

f J N^ ^(t)]' dt 

1/2 

M+I». (t)" dt a maximum (1-23) 
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where K is a constant (Lagrangian multiplier).   If the signal   sjCt) is assumed to be a specified 
but otherwise arbitrary function of time, and the noise n^t)  is ergodic and has a known corre- 
lation function ^„(r), then the time averages in Eq. (1-23) may be replaced by ensemble aver- 
ages, with (t)  held constant at a fixed value  t0, relative to a temporal frame of reference 
attached to the signal sjCt).   Equation (1-23) then becomes 

so^to)   - MfoCO    =    a maximum (1-24) 

where  O)  is a constant equal to (K- 1)  and the bar indicates a time average (which equals the 
ensemble average).   For a linear filter, Eq. (1-24) is equivalent to maximizing the signal-to- 
noise ratio  (p), i.e., 

^(to) a maximum 
n0

2(t) 
p  =    a maximum (1-25) 

n0
2(t) 

which is the criterion used in North's theory.   Thus, if the criterion used to optimize a pre- 
detection filter is of the mean-square-type, and the filter is linear, then the filtering criterion 
reduces to the North criterion.   The primary difference is that the noise in the North filter 
was assumed to be white, Gaussian noise, while in the present case, the only restriction im- 
posed is that the noise be ergodic.   The predetection filtering criterion, Eq. (1-23), may also 
be expressed as 

n 2rt)   -  Ks„(t„)    =    a minimum (1-26) 
o ' Ov     O' 

which is the most convenient form for design purposes. 

For the case of nonwhite, Gaussian noise, the transfer function of the linear, physically 
realizable optimum predetection filter having infinite memory time is expressed as 

H^)   =   —* j e-Jwtdt  j S(3aJ   e da/ (1-27) 
o 

where 

OJ' = variable of integration, 

• = complex conjugate, 

S(jw) = Fourier transform of the signal s^t)  at the input, 

N(a)2) = power spectrum of the noise   n^t") at the input, 

N+(j&0 = factor of N(a;2) which, together with its conjugate, is analytic in the right half of 
the jw  plane, and thus, N+(ja))N*( jw) = N(üJ

2
). 

In general, N(^2)   is of the form 

1 2£ 

NO2)   = -^ X— l-^ (I-28) 

+ b,w2 +   • • •  +  bo)^ 

where (m)   and (£)  rarely exceed (3).   It the input noise is assumed white, the transfer func- 
tion obtained from Eq. (1-27) is in agreement with matched filter theory. 

In the more practical case of finite memory, the situation is a little more complicated due 
to the requirement that h(t), theimpulseresponse, vanishes not only for  t < 0 but also for 
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t > T, where (T) is a specified constant.   The impulsive response of the optimum filter is 
found'to be the sum of the impulse response for the infinite memory case plus three summa- 
tions.   The summations involve impulse functions of various orders, arising from discontinui- 
ties of h(t)   and its derivatives at  t = 0  and t ^ T  and the general solution of the differential 
equation  A(-p2)h(t) - 0 where  A^) is the numerator of N(a.2). 

It is found that Eq. (1-26) is minimized if the impulse response satisfies the integral 
equation: 

T 

j hCr)  <jJn(t-T)dr   =    si(t0-t) for    0  <  t   < T (1-29) 

o 

where \f (T) is the correlation function of the noise component of the input to the filter.   When 
T = oo, Eq. (1-29) reduces to the Wiener-Hopf equation which is encountered in Wiener's theory 
of prediction.   If the impulse response for finite observation time is the solution of Eq. (1-29), 
the mean-square value ot the noise output of the optimum filter, a2, is numerically equal to the 
signal output at t = t0, i.e., 

T 

v*  =  jh(t) 5l(t0-t)dt  =   s0(t0). (1-30) 
0 

Using Eqs. (1-25) and (1-30), the signal-to-noise ratio  (p) at the output of the optimum filter is 

ISQ^Q)!
2 ft   . (1-31) 

^max   -'     p   "     so(t0)- 

It is important to note that the criterion used for both the matched filter and the   Z-R opti- 
mum predetection filter is of the mean-square-error type.   There are many criteria that may 
be used to evaluate optimum performance but the mse  is chosen primarily for its accessibility 
to analytic manipulations.   The main advantage of the above methods tor optimum filter design 
is that thev require relatively little statistical information about the noise and are thus less 
critically dependent upon the time and space stability of the signal and noise characteriatics. 
A priori knowledge of the power spectrum or the correlation function of the noise is usually 
sufficient. 

5.    FILTERING IN AN IMPULSIVE NOISE BACKGROUND 

An important class of interference which presents a different type of filtering problem is 
impulsive noise.   Its distinguishing feature is that the energy occurs spasmodically, rather 
than continuously.   Impulsive noise ordinarily has a wider spectral energy distribution than the 
signal.   In underwater acoustics, impulsive interference sources may consist of explosives, 
earthquakes, or mechanical impacts generated at or near the receivers.   Electromagnetic 
impulsive sources may consist of lightning discharges, or automotive and aircraft ignition. 
Statistical distributions of impulsive noise may be non-Gaussian and consequently the analyses 
of filtering problems previously described are not applicable.   In the previous problems, the 
effectiveness ot filtering operations was determined by comparison of the interference dis- 
tributions with and without the signal being present.   It was indicated that when the noise is 
white, and Gaussian the desired filtering operations can be determined - with an important 
advantage being that the only a priori information required is the mean power spectrum (or 
autocorrelation function), and the sole constraint being that the desired and undesired source 
are not correlated.   Knowledge that the interference is Gaussian permits statistical predictions 
of performance - for example, for such distributions, the instantaneous value exceeds 3.09 « 
rms value for only 0.2 percent of the time. 
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It is important to recognize that the distribu- 
tion of non-Gaussian interference is dependent 
on the time for which the noise is integrated be- 
fore the variation of its envelope is determined. 
When the integration time is long (for example, 
when narrow band filters are used) the distribu- 
tion approaches Gaussian - although for some 
types of interference it may be necessary to use 
very long integration times.   Figure (1-7) illus- 
trates the amplitude distributions of atmospheric 
noioe envelopes as a function of receiver band- 
width.   Figure (1-8) compares a type of impulsive 
noise with Gaussian, and in terms of the Central 
Limit Theorem, it is possible to convert a non- 
Gaussian into a Gaussian process by increasing 
the integration time.   Based on this factor, it is 
possible in some problems to minimize the ad- 
verse effects of impulsive noise.   Assume that 
the interference consists of a succession of tran- 
sients whose duration is approximately equal to 
the reciprocal of the system bandwidth.   If these 

■        i . impulses are passed through a linear filter whosp 
mpulse response has a very large TW product, then the transient responle wilSt for aTonger 
„rTÄ1  I" chan"e .reSP<in8e-   A filter transient response of this nkture is indicated by FJ- 
ure (1-9).   Energy delivered in the original impulse will be "smeared" over the time intervaf 
TF, ana consequently the peak amplitude will be reduced by the ratio of thrchanneTresDonle to 
the smearing time.   The smoothing may be continued to the point at which toe Sh of the 
shearing becomes comparable to the average time interval between pulses 

0.1      0.5 I 5 10      50 1000       0,000 

FIELD INTEIIISITY(MV/METER) 

Figure 1-7 - Amplitude distributions 
of atmospheric noise envelopes as 
functions of receiver bandwidth 
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REGION I 
EXAMPLE OF OBSERVED 

-IMPULSE NOISE DISTRi- 
*C      SUTION 

GAUSSIAN (RAYLEIGH. ETC.) 
^DISTRIBUTIONS 
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FILTER TRANSIENT 

LOG OF LEVEL   X W^ ^v^/V 

Figure   1-8   -  Noise   probability- 
distributions 

Figure 1-9  -  An example of a 
complicated impulse response 

The smearing of the noise must be done in such a way that the signal itself is not badly 
degraded.   If a total bandwidth of W is required in the channel and then, if tuned-circuit filters 
are used whose bandwidth is inversely dependent on the smearing time, then a total of  2TFw 
channels would be required to accommodate the total bandwidth w.   The requirement for mul- 
tiple channel processing may be eliminated by using encoded transmissions wherein the trans- 
mission would be in terms oi waveforms which differ from an Lnpulse and whose duration 
would extend over the time interval Tr.   As a result, at the receiver, the decoding process 
would consist of processing over the interval TF, thereby automatically performing the smear- 
ing process on the interference. 

6.   EXTRACTION  FILTER 

INTRODUCTION 

There are many factors to consider when "optimizing" a filter's performance.   Optimiza- 
tion will depend on the purpose of the filter, the nature of the inputs, the criterion employed 
for evaluating performance, and component tolerances.   In the preceding discussions, the prob- 
lems involved detecting the presence or absence of a signal masked by a noise background. 
When the spectra of the signal and noise do not overlap appreciably or are different in their 
time structure, then various filtering methods may be used.   As the performance requirements 
become more severe, analysis becomes more complex.   Effects such as interaction between 
spectra, rate of change of spectra, and finite memory time must be considered.   Physical real- 
izability and significance of criteria employed in design needed to be more carefully examined. 

An important problem involves preserving or extracting the waveshape of a signal.   A filter 
which performs this operation is called an extraction filter and may be designed for smoothing 
or predicting or may combine both operations.   A smoothing and predicting filter extracts the 
wanted signal from a signal plus noise complex and yields future values of the signal. 
Physical prediction depends on the process having statistical regularity, and on the 
existence of correlations between future values of the signal and past values of the known data. 
If the prediction is accomplished by a linear operation, then the only type of correlation that 
can be used is linear correlation.   This has the disadvantage of not making complete use of 
possible relationships contained, for example, in higher moments.   It does have the advantage 
of simplifying the analysis and facilitating synthesis of the optimum filter.   Often, a linear 
prediction is the best that can be done though it may be inadequate.   The application of corre- 
lation and spectral analysis to the design of linear systems for statistical smoothing and pre- 
diction was first proposed by Wiener. 

LINEAR  LEAST  SQUARE  SMOOTHING AND PREDICTION 

There are three main assumptions upon which the application of the Wiener theory depends. 
These assumptions are: 
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1. The time series represented by the signal s(t)   and the noise nft)   are stationary. 
This is to insure that statistical regularities observed in the past will continue in the future 
(the statistical properties do not change with time). 

2. The prediction and smoothing is obtained by a linear operation, that is, with a linear, 
physically realizable filter.   Linearity encourages generalization of theory to include a wide 
class of signals and realizability requires the results be practical. 

3. The measure of effectiveness of the filter is the mean-square difference between the 
actual output and the desired output.   This is an ensemble average which uses the statistics of 
the amplitudes of the different frequency components of the signal and noise. 

The Wiener filter performs linear least square prediction and smoothing of a stationary 
time series.  If he(t) is the impulse response of an ideal linear filter whose output is e(t), then the 
following characteristics are desired for an input signal, s(t): 

(a)   Ideal prediction 

e(t)    =    s(t + a) 

He(ja>) 
.JO"» 

(b)   Ideal smoothing 

e(t)    =    s(t) 

he(t)    =    5ft) 

He(j<a)   =    1 

where He( jcd) is the transfer function of the ideal filter and   (a) is positive, signifying a time 
advance.   As a result of filtering linearly, 

e(t) j  he(ß) s(t-ß)dß (1-32) 

which is not necessarily physically realizable.   The above also indicates that if the smoothing 
problem is solved, it may be easily extended to include prediction by introducing a time advance 
(a.)   in the time solution or a continuous, linear advance in phase e'0"- in the frequency solution. 

Let the signal plus noise be denoted by x(t) = s(t) + n(t) and defined for   -00 < t < T, where 
(T) is the present time.   The problem then reduces to finding the best mean-square estimate of 
e(T) that is generated by a physically realizable linear operation on x(t). The procedure is shown 
in Figure (T-10) where l(T) is the estimate of e(t) at time (T), and h(t) and H( jw) are the impulse 
response and transfer function of the linear filter, respectively.   Applying the mean-square error 
criterion to the output of Figure (I-10), 

mse   =   EfcV)]     =   E[e(T)  -  S(T)]2 (1-33) 

where  E[ ] refers to an ensemble average oi all possible signal and noise functions with each 
weighted according to its probability of occurrence.   Expanding the right side of Eq. (1-33), 

mse   =   E[e2(T)]   -   2E[e(T)  e(T)]   + E[e2(T)]   . (1-34) 

The signal and noise are random processes assumed to be statistically independent, stationary, 
have zero means, and autocorrelation functions ^a(T) and 4>n(r), respectively. With the aid of 
the convolution theorem, Eq. (1-34) may be rewritten as 
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s(t)< 

IDEAL FILTER 
(>,tl),H,(i<u) 

e(l) 

(desired) 

x(t)=s(t)+n(tl 

T 
n(tt 

LINfAR FILTER 
h(r),H(j<D) 

o- 

(ewt-mote) 

-oe(t)=e(t)-e(t) 

Figure I-10 -  Procedure for estimating the desired 
output with a linear, physically realizable filter 
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Figure I-11 - Procedure using spectrum-shaping 
technique for obtaining an optimum smoothing and 
prediction filter, H(if<)) 

o> CD   a) 

^(0)  -   2   f h(/3)  't>x,(ß)dß + J j hißj h(ß2) ^x0x-ß2i  <&l ^2 (1-35) 

where  V (O) is the average power in e(f,. ^.„(r)  Is the crosscorrelation function between 
Ift) and xct), and  0 (^8 the autocorrelation function of x(t).   The problem now is to f nd 
a function h(      which minimizes the integrals in Eq. (1-35).   This suggests usir^ the calculus 
of variations.   Applying this technique to Eq. (1-35), the mean-square discrepancy be ween the 
desTred and actual output will be minimized if the impulse response of the optimum filter h(t) 
satisfies the following relationship: 

Hß) tJt-ß^dß  =   0x.(t) for all  t > 0. (1-36) 

This is known as the Wiener-Hopf equation. 

Tf xm  is reduced to white noise, then the Wiener-Hopf equation may be easily solved.   In 
order to make use of this Tact, a spectrum-shaping technique is introduced.   If the amplitude- 
ph're Ipe^trum" of the input is' denied by X( j*). then the new P^Se^xtUÄrÄ 
mum filter is shown in Figure (I-11) where   x'(t) represents white noise.   The Wiener Hopf 
equation is then expressed as 

(h'(/3) Vx,(t-/3)d/3  .   0xle(t) forallt>0. (1-37) 
o 

Since the autocorrelation function of white noise is an impulse function, Eq. (1-37) reduces to 
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h'Ct)    =    Vv^t) 

=    0 

t   > 0 

t   < 0 
(1-38) 

It is often desirable to work in the frequency domain when usiag spectrum shaping tech- 
niques,   For example, it is convenient to determine the cross-power soectra between x'm 
and eft).   This is v *.   > 

«W") (1-39) 

where  w,(a.)  is the power spectrum of the signal and X(-J«)  is a factor of the power spectrum 
of the input W (a.) such that Wx(a,) = x(ja;) x(- j^);  x(s) has all poles and zeros in the LHP. 
Equation (1-39) may then be expanded as 

W,'e(^    =   *£(<")  +  Wr(a>) d.40) 

where  We(a,)  corresponds to LHP poles and Vr(co) corresponds to RHP poles.   Taking the 
Fourier transform of both sides, 

and has tht following constraints: 

•W»)   =   hf(t) + hr(t) 

he(t)   =   0 

hr(t)   =   0 

for     t  < 0 

for     t  >  0 

(1-41) 

(1-42) 

Comparing Eqs. (1-41) and (1-42) to Eq. (1-38), it is seen that only the poles in the LHP need be 
considered to insure physical realizability. 

The solution of the linear least square smoothing and prediction problem may be sum- 
marized by the following steps: 

1. Reduce the input x(t) to white noise. x'(t) 

2. Expand Vx. c(a>) = He(ja/) W,(a,)/x(-ja)) in partial fractions.   Let l.'(t) = S terms corre- 
sponding to LHP poles. 

3. Compute H'(jw) by taking the Fourier transform, 3{ }, of h'(t) 

H'n^) = 3{h'(t)}. 

4. Obtain the optimum filter whose transfer function is 

1 HO«)   =   H'(j^) 
X(}w) 

which is physically realizable. 

SIGNIFICANCE OF MEAN-SQUARE ERROR CRITERION 

The design formulas for the Wiener optimum filter depend only on the power spectrum of 
the signal and noise.   Consequently, it may seem necessary only to consider the statistical 
distribution of their amplitudes and not of their phases.   However, the Wiener filter filters on 
the basis of waveshape and not just the spectrum so that relative phases of the signal and noise 
must be considered.   Because it is required that the prediction be a linear operation, a com- 
promise is forced upon the design - that is, instead of using relative phase information prop- 
erly, the compromise essentially averages over the relative phases of the various components 
of the signal.   Two different types of signal with the same spectrum may produce the same 
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optimum filter ana the same mean-square error; however, the effectiveness of the filter may 
not be the same for both signal types.   Phase information can improve prediction ard smooth- 
ing along with the use of nonlinear elements (or possibly synchronous linear time-varying ele- 
ments).   Nonlinear prediction theory would introduce phase correlation as an additional param- 
eter to consider. 

An important assumption in prediction theory is the mean-square-error criterion.   This 
pnmanly minimizes the effect of the large errors without giving much weighting to the small 
errors.   When predicting, it is not always the size of the error that is important, for example 
rtliZffl clerrors may also be of significance.   In such problems, the small minor errors 
neglected by the mean-square-error criterion will have equal importance in describing thf 
performance of the filter as the large errors.   Other criteria may be used, such as maximiz- 
ing a conditional probability which would treat all errors equally but requires a complete sta- 
1.13 kn0wledfe of inputs    Another criterion may be that of minimizing the probability of 
exceeding a certain threshold.   However, when the distribution of future events is Gaussian   it 
does no. matter what criterion is used since the most probable event is the one for which the 
mean-square error is least. 

A least mean-square prediction is one which selects the mean value of the distribution of 
possible future responses since this is the point about which the mean-square error is least 
mnmnrnh^ f^'   f It ^^^0 fe}*ct the value of the signal which corresponds to the maxi- 
nZrPwtnn ^1       ^distribution.   However, the position of the mean is usually a non- 
linear function of the past history of the input and thus, does not necessarily correspond to 
maximum Probability    Only if the future responses are distributed according to a Gaussian 
S' .P    Th011 d0es

f.h
the best linear Predictor select the center of the distribution for the predicted 

value.   Thus, in the Gaussian case a nonlinear operation or non-mean-squarP-error criterion 
would not provide additional prediction accuracy but would only increase the complexity of 
instrumentation and computation. ' 
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J.    SPACE-TIME ASPECTS 

1.    INTRODUCTION 

Previous sections have indicated the progressive evolution of the complexity of descrip- 
«IHIL

0
/- 

clrcu"and„sPatial e^ments.   Initially, the primary concern involved structural con- 
siaerations.   The effects of boundaries and of errors resulting from approximation were t'ien 
discussed, along with methods for assessing performance when various types of signal and 
interference are present, and when multiple functions are to be performed simultaneously - 
H«ta!f

a.?P   ' de*errni"1
in8 tilKe of arrival and frequency content.   Although not developed in 

detail, it was indicated that informational criteria and decision theory offered advantages in 
ar^Hif" Hhe^Se of

1
signal-to-noise «»easures.   In particular, decision theory Concepts 

ftf.6 H       I7 exlende
1
d t0 ln

J
clude sPace. and space-time relationships.   Relationships among the 

hP fnM, H ^e^KPer^rmw' USe 0f a pri0ri illformation, and the effects of uncertainties are to 
be included in the actual formulation of the problem. 

Fituations which characterize many important informational processes are functions of 
Doth space and time.   Such problems increase in complexity not only because of the added 
number of dimensions but also because the physical interpretation's become considerably more 
ditficult.   Space-time processes may require the solutions of partial differential equations  for 
which, in contrast to ordinary differential equations, generalized methods for obtaining solu- 
^"LT6 n01 ava^able-   Complete solutions necessitate the use of specific boundary conditions 
and determining the physical validity of the assumptions made regarding boundary conditions. 

When only the space domain was considered previously, an analogy to a time-and-band- 
limited waveform was a spatial element of finite extent and whose pattern was restricted to the 

m.ntfn,1^ POHtl0n 0f the fie
J
ld' that iS' the region of real angles-   Space-time processes involve 

T  £! bou"darie3
l imposed in the space and time domains.   The analyses of such problems 

not „i b«suff
f
lcie'ltly complete to establish the primary informational features which include 

not only the structural aspects, but the full range of detail which is observable within the 
structural elements.    Observations may not be made of infinite detail since fluctuations 
ultimately impose a limit when finite observations are involved.    Even in the absence of 
fluctuations, when the process includes multiple operations which are to be performed 

ThTi T       V^f^T1*5 may exist which strain the detail which can be observed. 
■Tf thpt WHV ^ 0nly establish these feat»r" ^t should also provide comparison 
of the eifectiveneas or assessments of relative costs.    This may be done, for examule   bv 
he requirement that the least number of independent parameters be employed. o,Thi      * 

they b^ used most economically. v   y    > "' 

n^1:?111 become evident ***t apart from the greater complexity, there still remains a con- 
andSr^hlTh "H

6
 
among1.

the methods which may be employed with space-time process, 
and those which have been earlier derived for simple elements and processes. As examples 
useful quantitative measures may be obtained from space-time sampling, space-time corre-'" 
lation functions, and space-time ambiguity functions. Probabilistic, deterministic and com- 
bined probabilistic and deterministic measures may be required and for reasons similarTo 
those given in the ear her sections.   Fourier methods were found to be useful in space and 

me Problems, and illustrated some of the basic concepts of transformation and representa- 
tion philosophy.   A correspondingly important role is played by "waves" - that is, responses 
which exist and are propagated over spatial coordinates.   In all cases it is necesskry to keep 
clearly in mind the limitations of the methods.   In particular, although a number of physical 
problems in which the wave equation may be applied have common mathematical bases, the 
physical verification, that is, agreement with observation is the ultimate test of the validity of 

167 



168 

Comnlete and detailed ascriptions of space-time processes even for relatively simple 
acoufS problems would transcend the scope of this survey.   Such descriptions would require 
consfderation of energy and information transfer taking into account dissipaUve and dispersive 
nropertLs of the medium.   Descriptions of the physical features of the environment are often 
male    n a sense, independently of the method of observation, and of the interrelationships and 
Steräctions of the measuring instrumentation with the process being described and observed.^ 
Additionally, the effects of assumptions made in order to simplify the mathematical analyses 
wMchInvolve concepts as plane waves, "fields," "point" sources, coherency and incoherency - 
Ire not always evident in the descriptions of the problems.   An important factor to be illus- 
trated is the requirement for describing the interrelationships completely, by including the 
limitations of the observation process, and the effects of assumptions and constraints m the 
formulation and analyses of the problem. 

2.    ACOUSTIC WAVE EQUATION 

If a fluid is in a state of equilibrium and ti.a pressure in a certain region is changed from 
its equilibrium value, the fluid will immediate produce forces which tend toward res ormg 
the eauilibrium value.   Vibrations result, which are propagated as waves through the fluid. 
The restoring forces are attributed to the elasticity of the medium and the wave propagation 
due to the inertia of the displaced particle, permitting a transfer of momentum to adjoining 
particles. 

Assume an Isotropie, homogeneous, perfectly elastic and ufbou^a
m

n
e

n^"'^0^ 
acoustic waves of relatively small amplitude.   The velocity vector  V of a particle at point 
(xTz)   Tüme (t)   may be represented as the gradient of a scalar velocity potential function 
*, as indicated in section H-7, i.e., 

V   =   V^x.y.z.t) (H-5) 

ADDlving the principle of continuity and the additional assumptions that the fractional change of 
fhe' nstln^ePous density from itsmean value is small compared -^^ and the resolved 
vector velocities change slowly with respect to their corresponding ordinates, Eq. (H-5) 
becomes 

where v2 is the Laplacian operator 

at: 

?x2       3y2 3z2 

(J-l) 

(J-2) 

and (r)   is the speed of propagation through the medium.   Equation (J-l) is the three- 
dimensional form of the acoustic wave equation and gives the relationship between the time 
Äte derivSlves of the velocity potential in the fluid (liquid or gas) satisfying the above 
conditions. 

Physically, the acoustic wave equation gives a dynamical description of a physical proc- 
ess relating various temporal and spatial rates of change.   Mathematically, ^t^ a linear 
homogeneous partial differential equation of the second order, and may be written as 

LW (J-3) 

where L is the linear differential operator or Lorentzian operator, 

.11 
~^2 

(J-4) 
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satisfying the principle of superposition. A general solution of a partial differential equation 
like (J-3) always contains arbitrary constants and functions. These can only be evaluated by 
considering the specific conditions of individual problems. Descriptions of space-time proc- 
esses necessitates a consideration of boundary and initial conditions. 

Boundary conditions are fixed by the geometry of the medium itself while initial conditions 
are concerned with the disturbance which causes the acoustic wave to be propagated. An ini- 
tial condition may specify a distribution (of pressure, velocity, particle displacement, etc.) at 
a certain instant of time over the whole fluid, or some acoustic variable as a function of time 
at a fixed point. The wave equation, (J-3), says nothing of the disturbance or mechanism gen- 
erating the wave and applies only to the region excluding sources. Mathematically, this im- 
plies that 

¥<a)(o,o,o,t)   =   0 a = 0,1 ■ (J-5) 

Such conditions r.re classified as nomageneous.   Homogeneous boundary or initial conditions 
usually consist of the relations between the values assumed by the desired function and its 
derivatives on some closed surface of the domain in question.   When an excitation is applied, 
the problem changes from solving a homogeneous wave equation with homogeneous boundary 
(or initial) conditions to one having nonhomogeneous boundary (or initial) conditions.   A very 
useful concept in boundary-value problems is that, in general, homogeneous differential equa- 
tions with nonhomogeneous boundary conditions are essentially equivalent to nonhomogeneous 
differential equations with homogeneous boundary conditions.   This entails basic assumptions 
as to continuity and differentiability. 

The general solution of the wave equation depends on the symmetry of the propagating 
wave which is determined by the source geometry.   For example, if there is symmetry with 
respect to an infinite plane, energy will be propagated in one direction only, normal to the 
plane.   For one-dimensional (x)   motion the wave equation becomes 

a2^ _ j_  -^ 
3x2 '  c2    3t2 

(J-Ö) 

The general solution of Eq. (J-6) is of the form 

^(x.t)    =    fjCx-ct)  +   f2(x+ct) (J-7) 

where f 1  and  fj are arbitrary functions depending only on the initial and boundary conditions. 
The waves (J-7) are called plane waves and have the characteristic property that the acoustic 
pressures, particle displacements, etc., have common phases and amplitudes at all points on 
any plane perpendicular to the direction of wave propagation. 

Sound at large distances from an actual source resembles the sound from a point source 
more closely than it does that from an infinite plane.   Consider an acoustic wave which is 
propagated in three dimensions and is symmetrical with respect to a point source generating 
it.   The pressure or velocity potential in the surrounding medium will be a function of the dis- 
tance (r)   from the point source only and of the time  (t).   The Laplacian operator reduces to 

B2   .  2   a 
Br2 +  ^Tr 

in spherical coordinates and the wave equation may be expressed as 

say + 2 31 _ _1_ 3^P 
3r2       r    3r ~  c2   3t2 + ^-A ^=0 (J-8) 

or 

ar2        c2     at2 {J-9) 
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Comparing Eq. (J-9) with Eq. (J-6), 

f(r.t)    =   7 fjfr-ct)  +7 f2(r + ct) . (J-10) 

The first term of Eq. (J-10) represents a spherical wave diverging from the origin of the 
coordinates and the second term represents a similar wave converging on the origin.   The 
latter is of little importance in acoustics.   In contrast with plane waves, the particle velocity 
of acoustic waves possessing spherical symmetry is generally not in phase with the pressure. 
Ifowever, the wave fronts of many types of divergent waves in a Jtomogeneous medium assume 
the characteristics of plane waves as they proceed to great distances from the generators. 

Another important type of acoustic disturbance is that propagated in three dlmensirns and 
is symmetrical about an axis such as that of a cylindrical source.   The Laplacian operator 
reduces to 

3r2 +  r    3r 

in cylindrical coordinates where (r)   is now the distance measured from the polar axis.   The 
wave equation then becomes 

^2v      i  a*      i   d2f 
-7+7^- — -^—=  0. (j-11) 
r2        r   3r        c      at2 3 

The solution to Eq. (J-11) represents a cylindrical wave and is given in terms of Bessel func- 
tions of the first and second kind of   ero order.   Both functions are similar for large values of 
(r), where they are approximately sinusoidal with amplitudes varying inversely as the square 
root of (r) .   In the vicinity of the origin of the coordinate system, Bessel functions of the first 
kind are finite while those of the second kind are infinite.   Bessel functions occur in the theory 
of cylindrical and spherical waves just as sinusoidal functions appear in the theory of plane 
waves. 

Thus far, the wave equation has been discussed without considering the type of source 
distribution or initial condition.   If the displacements caused by the excitation produce restor- 
ing forces proportional to the displacement, then the initial acoustic disturbance will have the 
form of a harmonic vibration, producing a pure tone.   For example, assume that as an initial 
condition, the velocity potential (or pressure) is specified only at the source for the time inter- 
val between t = 0  and t = T and is zero for t < 0  and t > T.   Assume also that the waves are 
propagated in the positive x direction inly.   The harmonic solution for an infinite plane source 
is, from Eq. (J-7), 

"»(x.t)   =   A cos 2wf(t-x/c) (J-12) 

where (A) is the maximum amplitude of the disturbance and (f) is its frequency. The region 
of disturbance is always of width cT and is propagated with the speed (c). Fur a point source, 
if the initial disturbance is confined to a spherical shell of infinitesimal thickness at a distance 
r = r0 from the origin (this is necessary due to the infinite value predicted for <F at the origin 
in Eq. (J-10)) between the times t = 0 and t = T, then if (r0) is nearly zero, the velocity poten- 
tial at a distance (r)   trom the harmonic source and time (t)   is given by 

A cos Irrfft- r/c) 
"»(r.t)   =   pi '—!- . (J-13) 

Clearly, the maximum pressure change at the distance (r)  is given by A/r, decreasing as  (r) 
increases. 

In practice, as a first approximation, restoring forces may be considered to be proportional 
to the particle displacements for restricted portions of the medium.   With the aid of Fourier 
analysis, the harmonic vibration may be the building block tor the more complex solutions of 
the wave equation.   This is called normal mode theory.   A normal-mode solution is one where 
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the motion or vibration is described by a set of discrete frequencies whose amplitudes vary in 
a sinusoidal manner.   It is extremely useful in problems where standing wave patterns Ire 

SoTent^l mäv thp
elb0Undary Criti0n

f
S ^ t0 be met-   The general expression for" e velocity potential may then be expressed as a finite sum of the form 

f(x.y,z,t)   =   £ Ajx.y.z)  cosinntt . (J-14) 

Se,^H0r.tan/ featUr! "I the rePresentation is that the space and time dependence occurs as 
the product of separate factors    If Eq. (J-14; is substituted into the wave equation (J-l), then 
Afx.y.z)  satisfies the partial differential equation */, "«u 

2 
2A(x,y,z)   +   (^3-)    A(x vA(x,y,Z)    +   {—j     A(x,y.z)    =    0 (J-15) 

^hrinii
1
S..tfmefindei'^drt-   ThP fUnCti0n A(x'y-Z)   is referred to as an eigenvibration or 

maT^nHP^w0nand^.Parameter kn=(-W^)   is its eigenvalue or "proper" value.   Nor- 
?   N^e that En01?! S ,« fhaS80,Ci«ted.COnC«ept 0f °rth°g°nality have been discussed in section i .   Mote that Eq. (J-14) is the solution to a fixed boundary problem when the initial nresmire 

the'orv f,n tn fau ^ e^reSSe-d aS a finite SUm 0f eigenvibraüons.   The utiSy of norm^ rn^e 
theory is that i  provides solutions which lend themselves to practical problems.   However 
trtZ M lhe eXPTe 0f excludi,,g the e«ect of interactions between the space and lime 
vanaoles, which may often prove to be the primary consideration. 

hP f«„«frfr ^Pr^UCe ! disturbance in * medium which propagates as a wave - energy must 
be transferred to the medium. Energy propagation is an imporTant aspect of wave motion For 
a material medium the product of the stress and the displacement velocity at a poinT°n°he 
SÜ^If ^K 

rate at WhiCh energy is beinS communicated, per unit area of wavefront  to 
the medium by the wave at this point.   This rate varies in time and space.   For a harmonic 
^Hgnht     Vfh

WaVe " 1S "eceS8ary to take an average over time at a particular potaMn S 
and obtain the average flow of power per unit area of the wavefront.   The average flow ofpower 
per unit area in the wave may be used to represent the intensity of the wave.   In general  tor a 
wide variety of waves, the power Per unit area is proportional to the time derlvXe of a quan- 
tity representing the deformation with the space derivative of the same quantity 

DarticuTarlTi^hntf ^ ^"f. isfi
nvolved in ^^B intensity, different times of averaging, 

particularly if short compared to the period of a harmonic wave, will give different intensities 
All measuring devices require a finite time to respond to an excitation    An instrument wWch 
averages over a short period will indicate fluctuations which are not apparent for "strumen^ 

ofT/^r1^1^ l0nger ref0nSe timeS-   In ^P"ing measurement with ZorylthTnLre 
of the measuring device must be taken into account - and for space-time processes^ in ^Son 

IstbrSen^rac^unt!0 "" bandWidth• the SPatial eXtent 0f the ^^^ withi" ^medium 

An important aspect associated with energy considerations is that it is possible to derive 
the wave equa ion using techniques employed in mechanics for obtaining the equations of moüon 
tertr^ll^T. h  particles:   Additionally, by using variational methods invo ving Total 
energy, analysis of problems may be facilitated.   Since the wave intensity expresses the aver- 
age power transmission per unit area of wavefront in the wave, it may also be represented as 
the product of the wave velocity and the average total energy p^r uni/vo umfin the porüon of 
d/n«,     U™being traversed by the wave - energy per unit volume is designated as fhe energv 
density.   The average total energy density is the sum of the average Kinetic energy densitvafd 
the average potential energy density.   For a plane harmonic progressive dilatationaf wave  the 
energy density is equally divided between kinetic and potential.   For stationar7waves   partic 
ularly when a number of modes may be present, the space-time average of the Sc ener^ 
density is the sum of the average kinetic energy densities for the various modes    Here  too 
he averaging time and the specific details of the measuring instrument play an important röle 
n determining the existence and magnitude of fluctuations.   For stationary wav,^ it Vs evident 

that energy density is a more meaningful measure than intensity. ' 

front?*16 thn!^68611^i0nS ? WaVe Pr TOaeation may be made in terms of the motion of the wave 
fronts - that is, surfaces of constant amplitude and phase.   Ray theory permits constructing 
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curves which are normal at every point to the wavefronts, and which provide simplified means 
for determining some of the spatial propagation features, and for computing travel times,   it 
the medium is characterized by a constant phase velocity, the rays are straight lines,   in a 
stratified medium in which the wave velocity variation is normal to the layer, the rays are 
plane curves in planes normal to the layers, the cur"ature obeying Snell's law. 

Although ray tracings provide a convenient and useful representation, quantitative meas- 
.ires jf energy or intensity and of fluctuations, particularly when boundaries intervene, are not 
readily obtained. 

3.   SPACE-TIME  RADIATION PATTERN 

INTRODUCTION 

The previous discussion involved solutions of the wave equation showing some of the 
effects of boundaries, source geometry, and the form of the excitation    The specific methods 
used to obtain the solution encompasses the nature of th- boundaries    For example, th«. bound- 
aries of the propagating medium and the source geometry influence the coordinate system to 
be used in order to facilitate separating the space and time variables.   Excitation of the source 
establishes the initial conditions.   The use of energy and intensity relationsLips was also 

briefly discussed, including the characteristics of measuring instrumentation.   The examples 
illustrated the basic premise that generalized procedures for space-time processes are inher- 
ently more difficult to obtain, and that the assumptions made which facilitate mathematical 
analyses must be validated by physical interpretation. 

Huveen's principle is of considerable importance in radiation problems.   It states that if a 
source of radiation is completely enclosed by a hypothetical surface (S), then there is an 
equivalent source which when spread over fS)   will give the same field outside  (S) as the 
actual source.   Thus, if the Tieid is known ai all points of the surface, the field at exterior 
points (M)   can be determined by summing the contributions to the field ,.t (V)   from each 
elemental area (dA)  of the surface, assuming each to be a secondary source of radiation.   The 
equivalent source is not unique, that is. although different forms may give different internal 
fields, they will give the same external field. 

Even when the properties of the medium are taken to be constant, complex initial condi- 
tions can introduce complexity into the analysis.   When a source **™i^*e'f,£bf*$ 
the r°eior. of interest, its stress effects must be added to the equation of motion.   If Eq. (J-J) 
applies to a ^ion w^ich rtoes not contain sources' then the acoustic wav'- etlua"on for a reelon 

with a source distribution CO   may be written as 

LW   = -*. (J-16) 

The quantity (*)   is the source strength per unit volume or the volume rate at whicn fluid is 
injected into the medium. 

Consider a plane-surface radiator of finite extent whose active area is bounded by the 
lines x - * X/2  and y = + Y/2, where any elementary area of this source has the source 
strengthV(x y) dxdy .   The far-field pattern in the y-z  plane may be obtained by de erminmg 
thrPfttern of an equivalent line source along the y-axis having source strength distribution 
F(y), where 

X/ 2 

F(y)   =      [   *(x,y)dx. (J-17) 
- X/ 2 

A convenient means of synthesizing the y-z   plane and  x-z plane pattern functions of a plane- 
surface source is by requiring their source strengths to be independent so that they may be 
treated separately, i.e., 

<t>(x,y)   =   *(x) *(y) • {J-18) 
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face of the source is specified wnltv^; imp! es specuyms .HC •^•- 
the source. ^ 

GENERAL RADIATION PATTEKV 

Section G-12 indicated how the concept of the Green's fulJt^ion iaclUtatea analysis of time- 
varylng elements.   In particular, Green's, function permitted theTte^Mtlon of a nonhomofeneous 
differential equation describing the behavlo.- of the element, having hobn^eneou^ mitial condi- 
tions  to be written as an integral equation.   Analogously. Green s function e^n be apphed to 
solvtag acoustic wave equation for time-varying excitations.   Employing Huygern. .^-Snciple   If 
the source (.)   is located within a closed surface  ,51  such that (n)   Is the onward-no.   .al to 
:   (Q)   is a point on the surface, and (U) »s a point in -he field exterior to  (S), then ^ f ^-.ed 
solution of the nonhomogeneous wave equation (J-16) In terms of the Green s function .s of the 

form 

ffll:t)   =    fKM.O) «(ftt) d(0) (J-19) 

K(M,Q) is the Green's function and satisfies the differential equation 

L[K(ii.O)]   -   0 (J-20) 

everywhere excepi at the point M= Q.  Some of Its other properUes are that for f«^;* "f 
is a continuous function of   («, and satisfies the prescribed boundary ^«f"«"8-  p^^ .^ 
point M= Q. the first and second order derivatives of Kfll.Q) with respect to (H)  are conv.nuous. 
At the point M- Q, the first derivative has a finite discontinuity.   The final form of E«l- W-1»' 
will depend on the prescribed boundary conditions and the type of excitation.  This will define 
Green's function. 

It is convenient to assume the source strength separable temporaUy. as well as spatially, 
that is, 

♦(0:0   =   «Q)  f(t). <J-2l) 

•fQ)  corresponds to the amplitude distribution of the source strength across the surface (S) 
and   f(t) is the applied time excitation.   From the previous section, if ffO  Is harmomc, then 
the Fourier transform of ■*(?; t) with respect to (Q)   is the steady-state 'ar-f)eld radiation 
pattern.   Whether or not measured sound f.elds actually represent steady-state values is par- 
ticularly important when  f(t) l* ..onsinusoidal such as a modulated carrier.   For the sound 
field surrounding a tranBducer to build up to its steady-state value, a sul.icient time must be 
allowed for the sound waves to pass from one part of the transduofr to another.   The time 
required is of the order of the linear dimensions of the transducer divided by the velocity of 
sound.   Note that the contribution to the observing point (U)  at a time (       'rom a source at a 
distance  (O  is determined by the behavior of the source at an earlier time (t - r/c>.   l™»' 
the time (T    )  to establish the steady-state pattern for an aperture width (a)   is approximately 

c 
(.T-22) 

In section E, it was shown that there is a reciprocal relationship, similar to that in the time- 
frequency domain, between the width of the aperture distribution (B)  and the half-power beam- 
width (6)   cf the corresponding radiation patterr..   K (TO)   is the period of the carrier frequency 
of the excitation, Eq. {J-22) may be rewritten as 

T0       r (.1-23) 
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For a superdirective array, the effective aperture width will encompass the physical dimen- 
sions of the array and the region which controls the extension of the pattern in the "inaccessi- 
ble region" of imaginary angles. 

If the field point  (M)  is a great distance from the source, then the pressure at that point 
is given by 

P(H: t)   = -p Si (J-24) 

where (p)   is the density of the medium.   Substituting Eq. (J-19) into Eq. (J-24), where 
3/3t ?  partial time derivative 

pdfct)    =   -p JK(M,Q)   —[«fQ.t)]   dC Q) (J-25; 

which is a generalized expression for the sound presbure at any point ^nd instant of time in 
the acoustic far-f«eld, and for an array having an arbitrary spatial configuration and temporal 
excitation. 

HARMONIC EXCITATION 

An important solution of Eq. (1-19) and Eq. (J-25) is when the excitation is harmonic with 
time.   However, the ease with which *he velocity potential or pressure is determined depends 
upon how the Green's function is defined,   if K(K,9;   satisfies the homogeneous boundary condition 

3K(N;.Q) (J-26) 

on the closed surface; (s), then in the far-field, K(U.Q) has the form 

\ M - Q \ e 
2-»r 

-i -—  IM-OI 
(J-27) 

^M-Q1;    M-Q; 

where f(M,Q)  is a function determined bX^^the source configuration.   For a piston-type trans- 
ducer in an infinite rigid baffle. 

K(M,Q-)   = (J-28) 

Since the lime variation of the source strength corresponds to theV^gle angular frequency (w), 
the velocity potential Eq. (J-19) may then be written as 

^Mjt)   =    ft^le^^'^dCQ) (J-29) 

where   |M-Ql = r   and <KQ;t) = <t>(Q)eia't.   Applying Eq. (J-24) to Eq. (J^29), the far-field pres- 
sore p(M; t) becomes 

p(M;f) -ycop   J — 
Q)   _iw(t.r/e) d(Q) (J-30) 

This reduces to Eq. (H-8) for a line source. 

There are other methods for determining the far-field radiation pWtern using the Green's 
function.   With a periodic unit source at  (Q), the pressure at the freld rA^int (M)   may also be 
expressed as 



~ 

P(M)   = ^ j [PCQ) I; KCM.Q) - XfM.Q) ^P(Q)] dA( Q) 

where K(M,Q)  is a solution of the inhomogeneous equation 

r   +("TL) JKCM.Q)  =  -4^(fc, Q) 
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(J-31) 

{J-32) 

In problems involving harmonic waves, the unit rotating vec jr exp (j^t) is often omitted, as 
in Eq. (J-31), but is nevertheless inferred.   If K(M,Q)  is cho! 3n as exp(j2TfrA)/r, then Eq. (J-31) 
oecomes ■» \        / 

P(M) 
\\ h J LP^> ä-r 

An approximation commonly made in the far-field is 

A    el   ^      )        J2TT   c' 'A   r   3r   . 
3n   \      r      / X- r 3n   " 

dA(Q) 

3r   _      .   277 „ _   _   - j   ^ cos  Ö 

(J-33) 

(J-34) 

where  (ö)  is the angle between the normal vector (n)   to the surface   (S)  and the unit vector 
pointing from  (Q)   towards c\n.   Equation (J-33) may now be written as 

P(M) =  -i|[i 277 
cos  6  p(Q)    + 9p(Q) 

3n ] dA(Q) (J-35) 

xhough Eq. (J-35) is easy to evaluate, it requires knowledge of both the pressure p(Q) and the 
normal gradient of the pressure  3p(Q)/9n over   (S).   However, if the Green's function is 
defined as the solution to Eq. (J-32) that vanishes over the surface   fS), then Eq   (J-31) re- 
duces to -i- \        / 

P(M) = ifP(Q)Ä52dA(Q) 3n (J-36) 

Equation (J-36) permits determining the pressure in the far-field, p(M), in terms of measure- 
ments of the pressure over the source, P(Q).   Although it does not require a knowledge of 
3p(Q)/3n, p(Q)  and  3p(Q)/3n cannot be specified independently of one another over the surface 
In all of these methods, both the amplitude and phase of the pressure over  (S)  must be deter- 
mined.   It is often convenient to measure the phase relative to the source excitation    If the 
radius of curvature of the transducer is equal to or less than a wavelength, and if the phase is 
slowly-varying across the surface, then as a first approximation the wave field in the immedi- 
ate vicinity of the transducer may be considered as a plane wave propagating normally to the 
transducer face.   As a result, 

3p(Q) .     277 
J -r-p(Q) (J-37) 

making Eq. (J-35) more attractive for determining P(M).   Other methods not involving Green's 
functions can be used employing other coordinate systems (Ref. J-13). 

RESPONSE TO A MODULATED SIGNAL, 

An important problem in acoustics is the transmission and reception of wide-band signals 
Of particular interest is the ability to characterize the information in a modulated signal.   A 
modulated signal is one having some characteristic of it changing in a systematic manner which 
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may or may not be enhanced by the spatial properties of the medium and array.   For a linear 
array of discrete point elements, there may be a degradation of the radiation pattern if the 
modulation wavelength becomes comparable with the element spacing.   If the modulation wave- 
length is less than the total length of the array, then at a specific instant of time, different ele- 
ments of the array may transmit or respond to different portions of the modulated cycle. 

Spatial properties may be influenced by time-modulating the electrical signal or some 
paraaneter of the spatial element, such as its length, excitation function, or number of ele- 
ments.   If the modulation is periodic, and the fundamental modulation frequency (<^a)  is much 
smaller than the carrier frequency (w,,), then the time-varying radiation pattern may be writ- 
ten as 

G(ö;t)   =   A{b0(e)  +  bjfö)   cos  ^0t  +   •••} 
j"c<: (J-38^ 

where the t>n(ö)  are patterns which depend only on the structural spatial properties and (A)  is 
a constant.   All harmonics  (nojo) are independent of each other and are associated with specific 
radiation patterns bn(6).   For example, if it is desired to form 2N+ 1   pencil beams from a 
linear array of length  (-i) where the spacing between beams is (ö0), then Eq. (J-38) becomes 

G(S;t) L 
n=- N 

^V- 

(■v-nt^) 

j(a> +n.D  ) t 

(J-39) 

where (V)   and (v )   are sin d  and sin 0o, respectively.   A target in the vicinity of the angu- 
lar direction  (nv ) is directly associated with the frequency (nwo).   Thus, Eq. (J-39) may be 
considered as representing a frequency spectrum in which the magnitudes of the upper and 
lower sidebands indicates the presence and magnitudes of the targets in the corresponding 
directions.   These pattern characteristics are shown in Figure (J-l).   By applying the Fourier 
transform to Eq. (J-39), the aperture distribution or excitation function is 

F(x;t) T 
(2rr 

■nv   x-nw   t! (J-40) 

which represents atrain of standing waves traveling in the 
positive direction. Note that Eq. (J-40) becomes a delta 
function in the limit as N becomes infinite. 

It has been shown that when the modulation band- 
width is small compared to the carrier frequency, then 
single-frequency analysis is usually sufficient. For 
other cases, it may be necessary to sum the signals 
from the various elements of the array as a function of 
time in the desired direction to obtain the net pressure. 
Another criterion, discussed by Pritchard in Ref. J-20, 
is the mean-square response which is particularly use- 
ful if the modulated signal contains a random component. 
The mean-square response is also a natural means of 
evaluating the directivity factor which is a spatial aver- 
age of the sound intensity in transmission or of the 
square of the open-circuit output voltage from the array 
in reception. 

When a signal is passed through an array, it will 
have the frequency and spatial characteristics of the 
array impressed upon its own frequency characteris- 
tics. If F(JM) is the Fourier spectrum of the modulated 
signal, and GiB,^ is the steady-state radiation pattern 
in the far-field, then the mean-square response of the 
array at any angle   (6)  is prof jrtional to 

SPATIAL   REPRESENTATION 
8-0 

-SN        "82"9| I   ö| 6t 

0* "'e+N WQ 

FREQUENCY REPRESENTATION 

Figure J-l - Time modulated 
linear array forming 2N+ 1 pencil 
beams, each of which is associ- 
ated with a different frequency 
component 
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I     iFfjcj)!2  (OfÖ.oOl2 do (J-41) 

where (OJ^  and (a)2)  are the lower and upper cut-off frequencies of the system, respectively 
At ö = o,   0(6,a>) = 1, and Eq. (J-41) becomes 

|F(jaj)|      doi (J-42) 

which from Plancherel's theorem, is the total energy in the modulated signal.   The ratio of 
these two expressions is defined as the normalized mean-square response at the angle 
(0).   G*(0), 

G2(0) 
(o>2- OJj)   F(j<u)' 

7 

\     iFCjo;)!2   |G(0.a;)|2 dcü (J-43) 

where 

F(j<a)' 
(o. 

"2 

— l)   J 
|F(JM)|     do;, (J-44) 

The m- s  response removes all phase information and consequently is more suitable to ampli- 
tude modulation.   However, a correlation in phase introduced by the modulation results in a 
time variation of the average energy and thus can be described by the m-s  response. 

For a given array and modulated signal, if the element spacing is less than the modulation 
wavelength, then the directional properties of the array will not be appreciably reduced.   An 
order of magnitude for the modulation wavelength (\m)  is the product of the velocity of sound 
in the medium and the period of the modulation.   This may be approximated by 

47rc 

(OJ,- u.) (J-45) 

If these conditions are met, then the level of the normalized  m-s response for a modulated 
signal will be nearly tha* for a signal of a single frequency within the band. 

When the modulation wavelength is much less than the element spacing, it is convenient to 
determine the response as a function of time and of angle.   For a linear point source array at 
broadside, the response as a function of time will consist of a single signal having the same 
shape, but greater amplitude, than that emitted from or received by each element.   As (6)   is 
increased, the beamwidth will increase and cause the response to be spread over a longer 
period of time.   Due to interference between the signala from the separate elements, the ampli- 
tude response will be reduced relative to that at broadside.   A further increase in  (6)  will 
minimize the interference resulting in a time response comprised of a series of signals cor- 
responding to each element.   When this occurs, increasing (&)   will increase the distance 
between individual signals and consequently spread the response over a longer period of time. 
Furthermore, all amplitude levels of the response will remain fixed. 

The pr^ce^ing discussion excludes superdir .ctive arrays.   A superdirective array is 
more frequency sensitive and thus will lead to somewhat different results for the response to 
a modulated signal.   If the array is designed for the midband frequency, then a narrow beam 
will bR maintained but the level of the normalized mean-square response may be large for 
values of   ())  near  ± IT/2.   However, as before, if F(jw)  is symmetrical with respect to the 
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midband frequency, then the major lobe of the m- s response for the modulated signal will be at 
least as narrow as the major lobe of the m-s response for a signal of a single frequency at the 
midband frequency. 

4.   SPACE-TIME  CORRELATION  FUNCTION 

The ability of an array to discriminate against plane waves having spatially random phase 
characteristics is determined by Hie coherence of the waves at various points on the array.   If 
the state of knowledge is the value of the pressure at two arbitrary points (Xj)  and (X2)  and 
time instants (tj)  and (t2), then the coherence may be described by averaging the product of 
the pressures either temporally, statistically, or spatially. 

In the case of time averaging, the representation is called the space-time correlation 
function, «X^t^Xj, t2) and is expressed as 

<P(\1,tl;X2.t2-)   =  <p(X1,t1)p(X2, t2); 

where the angular bracket refers to a time average. 

T 

1      f 
=     J im    or   1 

T-.00 ^T 

dt 

(J-46) 

(J-47) 

Statistical averaging corresponds to the different possible states of the medium.   If the pres- 
sure wave is ergodic, time averaging and etatistical averaging yield identical results, depend- 
ing only on the time difference   T = ta- tr   For a spatially homogeneous process, the space- 
time correlation function depends only on the coordinate differences x = X2-xi,  y = ^"^i» 
z = Z2-Zl.   Thus, for a stationary and spatially homogeneous random process, Eq. (J-4b) 
becomes 

^Xi.t^Xa.tj)  =  «XJ-X^T)  =<p(X1.t)p(X2,t + T)> (J-48) 

and would yield equivalent results if averaged spatially.   As the distance between points and 
the difference between time instants increases, the correlation function decreases. 

If the acoustic pressure  P(x.y,i.t) = p(X,t)   satisfies the wave equation 

v2p - i- l!E =   o . 
v     c2 at2 

then it follows that 

(J-49) 

1 c2   3t2 
y2

0  -J. !!i=  o 
2 ^        c2    3t2 

(J-50) 

where (Vj)  and (V2)   are the vector derivatives with respect to (X^  and (X2), respectively. 
From Eq. (J-46), assuming stationarity, it follows that 

(.1-51) [^Xt.Xj.T)]     <   «X^Xi.O) vl'(X2,X2,0) . 

and by replacing (t)   by (t - T) , 

«X2,X1, -T)   =   «X1,X2,T) 

Equations (J-50), (J-51), and {J-52), together with appropriate boundary conditions, are suffi- 
cient for determining (VO- 

(J-52) 
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Sometimeü it is more convenient to consider the Fourier transform of the correlation 
function, 

WCX^Xa.oj)    =    J   ^CX],X2,T)e','"Tdr (J-53) 
- (a 

which satisfies the equation 

W(X1,X2,a;)   =   »(Xa.Xj. -«). (J-54) 

The space-time correlation function and its transform are primarily useful for describing 
incoherent acoustic pressures and the effect of linear operations on them.   For example, if the 
pressures at any two distinct points (x^  and (x2)  are uncorrelated, then Eq. (J-48) reduces to 

^Xj.Xj.r)   =   o^Xj)   5(X2-X,)   »(T) (J-55) 

where o^xp  is the mean square amplitude at the point (X^ and   (») denotes the unit impulse 
function.   Using the frequency description, it follows from Eq. (J-53) that 

W(X1,X2,a.)    =    o^Xj)   ä(X2-X1). (J-56) 

In general, if   rfX, t) dv is the impulse response of an array of linear spatial elements in vol- 
ume dV, then the average power  <T* at the output of the array may be written as 

^   =   jjjj    ""^I'tl)   r<X2.t2)   «XJ.XJ, t2-t^   dv1dv2 dt^ti- (J-57) 

Ey applying the convolution theorem to Eq. (.1-57), the expression for the average output power 
becomes 

5F Iff Hfxi 5F JJJ  H(xi^) H(Xa.«)  W(X2,X1,^) dV1dV2daJ (j.58) 

where n(X,w)  is the transfer tunction of the array.   All volume integrations are over the space 
(V)   of the receiver elements.   Optimizing the receiving response implies controlling the 
space-time correlation function as well as the impulse response.   This may be done by select- 
ing the configuration of the array, the manner in which the outputs are connected, and the fre- 
quency response of the elements. 

As an example, consider       Isotropie noise field, defined as one in which the total noise 
power received by a directional receiver is independent of both its location and its angular 
orientation.   If the distance between two arbitrary points (Xj) and (X2)   is denoted by (r),a 
particular solution öf Eq. (J-46) for the assumed conditions is 

0(r,T)   =   27 J tJ.r'W. (j_59) 
T- r/ c 

W.r.T) is the space-time correlation function of a uniform, Isotropie noise field.   From Eqs. 
(J-51) and (J-52), it is required that 

^(O   =   '/'cC-1-) (J-60) 

and 

'/'„(r)    <   0O(O) , (j_61) 

respectively.   The function 0O(T)   is the autocorrelation function of the pressure at any point in 
the field. 
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'VO   =    v^O.r)    = <p(X, t)pfX, t ♦ 7». (J-62) 

Since this is related to the power spectrum,  VI(CJ), of p(X, t) by the Fourier cosine transform 
(Wiener-Khintchine theorem), Eq. (J-59) may also be expressed as 

Ä T7") 

CO 

Vl(cü) COS   OJT  do; f.T-63) 

where weOJ)   is positive for all  (oi).   If ^ (T)  or  V(a) can be expressed analytically, ^r.r) 
may be determined from either Eq. (J-5g) or Eq. (J-63) using contour integration. 

For the special case of a rectangular noise spectrum c^.e octave in width, and a linear 
array parallel to the x-axis, Eq. (J-63) becomes 

0(x,O) 
Si(477x)  -  5^2™) 

2™ (J-64) 

where   (x)   is the spacing in wavelengths and SjCx)   denotes the sine-integral.   Figure (J-2) 
shows a plot of  yCx.CO as a function of the separation in wavelengthr, at the lower cutoff fre- 
quency.   Note that it Is essentially zero when (x)   is greater than 0.348.   It may be generalized 
that the effective directivity factor for uniform noise for a set of N receivers arranged arbi- 
trarily in space is  1/N, provided that the spacing between adjacent elements is equal to or 
greater than a half-wavelength at the geometric mean frequency of the band. 

08      10      IZ     14     16     18 

SPACING (IN WAVELENGTHS) 

20 

Figure J-2 -  Crosscorrelation   of 
octave   band noise 

5.   DIRECTIVITY  FACTOR 

The utility of the directivity factor is that it is a measure of the ability of a directional 
element to discriminate against interference arriving from bearings other than those desired 
since its response to any distributed interference will be less than the response of a nondirec- 
tional element.   The directivity factor will depend on the signal-to-noise ratio generated at the 
output of the element and is a function of the geometrical configuration of the array, frequency 
of the received signal, and the distribution of noise sources in the medium. 

The manner in which the transmitted acoustic energy at a fixed bearing varies with fre- 
quency or the manner in which the energy distribution generated by hydrophones varies with 
frequency when receiving acoustic waves over any given bearing, depends on the frequency 
dependence of the radiation pattern.   A measure of this is the manner in which the directivity 
factor (D.F. ) varies with frequency.   For the detection of signals of the threshold condition, 
enhancing the directivity t?ctor by the process of "shading'7 or selecting the element sensitivities 
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may be carried out with regard only to the background noise.   For such applications array 
design is not dependent upon the spectrum of the signal, as it is for a transmitting array   but 
onlj on the spectrum of the noise at the output of the array.   If the receiver does not contain 
any nonlinear elements, then the passband need only be as wide as is necessary io handle the 
signal. 

In section H-7, it was indicated that by proper selection of the excitation coefficients and 
element spacing, a directivity factor greater than that for a uniform, in-phase excitation may 
be obtamed.   If the spacing is sufficiently wide so that the correlations of the noise received by 
the elements is minimized, then having sensitivities other than uniform will do little to increase 
the directivity factor.   For element spacings less than a half-wavelength, a significant increase 
in the directivity factor can be effected, but the increase is less at wide bandwidths.   In general 
the maximum directivity factor of an equally-spaced broadside array for wide-band operation is 
less than that for single-frequency operation, much more than that obtained by use of the single- 
frequency design at the wide bandwidth, and except for very wide-band cases, is significantly 
greater than that obtained by usi.ig uniform excitation.   When a wide-band source is moved off the 
the maximum response axis  (MRA,   of an array, the effect is to broaden the pattern function 
Since the directivity factor increases with increase in frequency, resulting in a narrower beam 
the effect of having a wide-band signal off the MRA is to enhance the low-frequency components ' 
with respect to the high-frequency components. 

For a linear array, the relationship between the directivity factor and pattern function 
Qm*i(e'>  is 

•n/2 

1 I     f     r T 2 
Dl?     =   T    J        [G2N«l^>J      cos  ^ dO . (J-65) 

-77/  J 

If the received signal is modulated, then the squared bracketed term refers to the mean- 
square response defined by Eq. (J-43).   Substituting this into Eq. (J-65), the directivity factor 
for modulated signals  CD.F.) is related to the directivity factor for single-frequency opera- 
tion (D.F.) by -a        j    f 

"2 

(l/D.F.)   =    1 | 
(«j-a-j) F^T)   J 

lr(a,>|25nr<S) *■'• (J-66) 

In the special case of white noise,   |FC«)|     is a constant independent of frequency, and Ea 
(J-66) reduces to 

(1/DF-)   =   (a;^)  J    D.r!(a.) «^ (J-67) 

If the directivity factor is proportional to all frequencies contained in the noise spectrum  then 
it is but slightly reduced relative to the directivity factor for a signal at a single frequency at 
the center of the band,  a   = («, + ^2V2.   In most cases, if the modulation frequency of a single 
target on the MRA is much lower than the center frequency of the band, there will be no appre- 
ciable change of the directivity factor regardless of the target spectrum.   For multiple targets 
classification of the modulation will depend upon how different or orthogonal the target spec- 
tra are, relative to each other, as well as upon the modulation frequency. 

For a directional element in a uniform Isotropie noise field, the directivity factor (D.F.) 
may also be defined as the value of the signal-to-noise ratio characteristic of the element's 
location,  (S/N) ref, divided by the actual value of the signal-to-noise ratio,  (S/N)    ,. at the 
output of the element.   Thus, act 
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fS.) 

I,. F.   =   ^ (J-68) 

responses of both elements to this signal will be the same.   Equation (J-68), expressed in 

decibels, then becomes 

Nact(db)    =   Nref(db)  -D.I. (J-69) 

where D I.   is the directivity index defined in Section (H-7). 

the element. 

Rp-u.se i' is easier to determine the response of a spatial array to plane waves, if the 

pressed as 

D.F. 
A.P.W.I. (J-70) 
E P.W.I. 

For a directional noise field, the ratio in Eq. (J-70) would equal the effective directivity factor. 

6.    SPACE-TIME  SAMPLING 

^approa'chSom the point of visualization is to examine the acousUc wave equaUon. 

The acoustic wave equation is a linear partial ^^um c^ 
tinuous flow in the medium.   If the acoustic P^^ -^f^^ as a super- 
system, normal mode theory shows that ^ "^"^toe deoSnt variable is expressed as 
position of eigenvibrations, that is, vibrations for w^h ^e J™^ only or. the spatial 
The product of a ^depending ^ v Jration multiplied 
position.   If operated linearly uP°"']s

h^S™°alues form an infinite sequence of space- 
by a constant, the eigenvalue.   The associated

t "
B^nJ.,,,r„    „* imD0Sing boundary and initial 

time samples which completely characterize the medium.   f^filTencTe^iiL having a 

sr:^^ that the spatial and temporal 
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constraints have transformed a continuous field to a system having a finite number of degrees 
of freedom. 

If an array is limited in time operation and frequency response to (T)   and   (W), respec- 
tively, the received pressure distribution at any point on the aperture can be represented by 
2WT sampled values.   Similarly, if (0)   is the half-power beamwidth and  CL)  the length of the 
aperture parallel to some axis, the one-dimensional distribution at any instant of time can be 
represented by ALA  sampled values across the aperture.   The factor of two is unnecessary 
here because knowledge about phase at sample points spaced K/0 apart on the aperture is 
obtained from the 2WT   sample points in time.   Assuming the field to be comprised of eigen- 
vibrations, the total number of sampled values may be taken as the product of the spatial and 
temporal degrees of freedom.   Thus, the received distribution across the aperture (L)   during 
time (T)   may be represented by N, = 2WTÖLA sampled values.   However, it was indicated that 
a sufficient time must be allowed for the sound waves to pass from one part of the transducer 
to another.   The time required is of the order of the linear dimensions of the transducer divided 
by the velocity of sound.   Increasing the transducer dimensions to increase angular resolution 
constrains the minimum duration signal which the transducer can accommodate. 

If (H)   possible amplitudes of the pressure can be measured at each sample point, then for 
the one-dimensional aperture, the total number of different signals which can be described by 
(Nj)   sample values is 

H(2WuL/X) (J-71) 

Generalized, if there are Hq specifiable values of a physical parameter at each sample point, 
then for a three-dimensional array of volume (V), having "beamwidths" ex, 6 and ei along 
the cartesian axes, there are 

(2wm^ytv \3) 
77 Hi (.1-72) 

i = i 

possible signals.   Any one of these signals can give the history throughout the volume (V)   and 
for the time   (T), but there is only one which gives the actual history ol the space-time domain. 
Equation (J-72) gives the maximum permissible signals to be described by Ns = (2WTVöxöyeIA

3) 
sample values.   The actual number of signals which are observable is ordinarily much less due 
to constraints which reduce the effective number of independent dimensions and the range of 
observable or specifiable values. 

7.   RESOLUTION 

The type of resolution discussed here is that of angular resolution, also referred to as the 
resolving power, which my be determined from the radiation pattern of a receiving element. 
The complete details of tne radiation pattern may be affected by spatial and temporal parame- 
ters, both deterministic and statistical, and hence, the actual resolving power of a spatial ele- 
ment may not be simply defined.   Since angular resolution is dependent on the signal-to-noise 
ratio of the received signal, the size and shape of the source and receiver, the distance between 
them, and the dynamic range of the receiving and display system, it cannot be described only 
in geometrical terms. 

Resolving power is often expressed in terms of the beamwidth which is affected by the fac- 
tors given above.   For example, as a result of the inverse relation between the aperture width 
(in wavelengths) and beamwidth, resolution may be determined first by selecting the wavelength 
and size of aperture.   Another important consideration is the level of the sidelobes.   The pres- 
ence of sidelobes affects the resolution of the system when the problem consists of the identifi- 
cation of two or more sources which have a range of intensities.   Conventionally, equal intensi- 
ties are assumed and the sidelobe levels are hence not taken into account.   For a given aperture, 
sidelobes may be suppressed but at the expense of sacrificing beamwidth.   Therefore, it is in- 
sufficient to merely state the beamwidth without including a description of the sidelobe structure. 



svs+em instabilities modify the resoiviug y 
rately it may be determined. 

information theory has infiuenced the classical concept of --Wing power, ^t  ormu- 
iated ifopTcrby Providing -thods for deter     "h    i^umber ^ ^P^ 

b^av^r^Ä^^^^ -th space-timfc sampling- h 
Physically, the image of a PO-source is not ^^^j^^^^^f ** 

sourceTSut results from the ^^^""e^to reSSe two point sources whon  he cor- 
anprtur- "'an^    An ontical system is said to be "^ l°   «ufficiently separated to be distin- 

™.olvabU i( the central maximum ot !h'°"'""'°"„ F11,ure 0.3) „here (P,) a»d IP.,) are 
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points as 
(J-73) 

R   = 
A. 

-    ■'22 — 

Note that this „as obtained »Ithont conslderine the slg«,.l-to-nolse ratio. 

«„e radiation iron, antennas ^J^^^ZZS^^^JT- 

between first nulls (BWFN), that is, 

CEMTERS OF 
OlFFRACTiOK 
PATTERftS 

PO'HT J 
SOURCES 

LEHS  SYSTEM 

iaure J-3 - Illustration o£ the Rayleigh criterion Figur 
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(J-74) 

A radiation pattern for a single point source is shown in Figure (J-4.a).   The power pat- 

rASr^T 4 M
ÜCa!KP

t
0
h
int ^"^ ssParated by the Rayleigh angle is given by the solid curve 

in figure tJ-4.b), with the pattern for each source when observed individually shown by the 
dashed curves.   It is seen that the two sources will be resolved provided the half-power beam- 
width (HPßW) is less than one-half of the beamwldth between first nulls, which is usually the 
case.   For a spatial element at broadside, having uniform excitation and of length (L) 

BWFN   = 
114.6 
LA 

and 

(J-75) 

HPBW 
50.8 
LA (J-76) 

MAIN  LOBE 

L— BWKN     —J 

: 2 
SOURCES , PATTERN   FOR 

^S   SOURCES   1   AND  2 

/ FT \ 
PATTERN       /, 

FOR    -^y 
SOURCE   1    / AA >\PATTERN  FOR 

\          SOURCE 2 

/     ''      \ 

(a) (b) 

Figure J-4 -  (a) Power pattern and   (b) power patterns for two identical 
M-    '^"T.  SeP?ratfd ,by the Rayleigh angle as observed individually (dashed) and together (solid) 

Using Eq. (J-74), the angular resolution (R) is given by 

R   =   1.12 HPBW (J-77) 

where it is assumed that LA » 1.    Clearly, as (K) decreases, the resolving power increases. 

i t
T^ resolution capabilities cf acoustic arrays are on the order of a beamwldth which is 

fhr .!= w      S1Z
K 

0f the array aPerture-   A means of decreasing the beamwldth or improving 
the resolution is by using a ..uperdirective array.   This technique implies a very high o   de- 
fined as *, times the energy stored in the immediate region of the radiator divided by the 
energy radiated in one period, and will result in a reduced efficiency. 

(R^f ATm^h0<^K0r deb:igning and evaluating a superdirective array has been given by Tucker 
(Ref. J-37)    The performance of the overall eystem is evaluated by a Noise Factor which is 
defined as the ratio of the signal-to-noise of an array with uniform in-phase sensitivity to the 
signal-to-nolse of the excitation function needed to give a desired directivity index.   This may 
be done by superimposing a number of elementary radiation patterns of the form   (sin x'xl 

oha
espU^mr

tn
USed Wil1 dePefd 0n the degree 0f accuracy desired.   By applying a continuous 

phase shift to successive elements of the array, using electrical delay networks, a rattern can 
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be shifted to either side of the axis normal to the array and will take the form 

fsin(x   ±  nn)/(x   t  rm)]   . 

Therefore, as indicated in section (H-7), the desired pattern may be obtained by superimposing 
patterns whose ".eros coincide and which have their peak responses in the region of imaginary 
at^ws.   Their secondary lobes are then used to cancel out the secondary lobes of the ordinary 
(sin x/x)   response.   This is shown in Figure (J-5) for a linear array of length -t = 2\. 

In Figure (J-5), the Nois« Factor was found to increase in the synthesis of a superdirective 
response.   In general, it is found that the improvement of directivity factor by the superposition 
of patterns with peaks in the range of imaginary angles adds to the noise output, while contribut- 
ing nothing to the peak signal output.   More important, the Noise Factor is worsened at a much 
faster rate than the directivity factor is improved. 

Whether or not superdirective concepts can be used for receiving arrays strongly depends 
on the magnitude of background noise against which the signal is to be detected.   The thermal- 
agitation noise o; the dissipation resistance of the array is proportional to the power gathered 
by the whole radiation pattern including imaginary angles, whereas noise arising in the medium 
(thermal-agitation noise in water and "sea-state noise') is received by the portion of the pat- 
tern corresponding to real angles caly.   Consequ&sOy, if the Umlllng factor is the noise arising 
in the medium, then superdirectivity may give an improvement in the overall performance. 
However, if the system performar.ee is dominated by the noise from the dissipation resistance 

(« - 37?)       »in   (« + STT) 

X   -   377 X   +   377 

NOISE  FACTOR =   1.73  (1.76 OB) 

Figure   J-5   -   fjynthesis   of   super-directive    response    with 
reduced secondary lobes and slightly narrowed main beams 
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of the transducer elements (increased by the interaction of the acoustic radiation impedance of 
the elements that make up the array) or from that in the receiving amplifiers, then the super- 
directive array is inferior to the ordinary array.   The maximum value of the Noise Factor that 
can be obtained is that due to a uniform in-phase excitation. 

A few examples have been given which illustrated the nature and interrela'ionship of the 
constraints.   One of the effects of physical boundaries on acoustical processes was seen to 
transform a continuous "field" into a system having a finite number of degrees of freedom even 
when dissipative processes were not considered.   In determining energy and intensity relation- 
ships of the system, the averaging time must be taken into account - and the dcUlle of the 
instrument should include its spatial extent. 

Superdirectivity, and analogous concepts have been used to illustrate other relationships 
which may arise.   It was indicated that a complete specification of superdirective configura- 
tions should include the accessible and the inaccessible regions.   The net result is that although 
directional patterns having a narrower beam than may be obtained from uniform excitation of 
an aperture of the same width, tne realization of such patterns is characterized by severe re- 
strictions of bandwidth, and of susceptibility to inhomogeneities in the medium in the vicinity 
of the array. 

All real processes are bounded and constrained in one or more domains, and important 
clues leading to improved understanding and classification of acoustic and electromagnetic 
space-time processes lie in the examination of the interrelationships and interactions which 
arise among the variables.   Effective analysis will include these completely, thereby F  rmit- 
ting the most economical utilization of the domains involved.   Solutions to specific p^   urns 
always m cessitate detailed knowledge of the physical environment.   However, useful results 
are derivable from the generalized concept that finite bounds exist on the total information, on 
the rate, and density.   Physical processes may not be observed in infinite detail while still 
preserving the features upon which the identification or observation rules are based. 
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K.    SUMMARY 

A characteristic associated with the assembly, study, evaluation, and possibly thfl use, of 
the material received within this document, appears to be the tendency to oscillate between the 
extremes represented by the following quotations: 

"The human understanding, from its peculiar nature, easily supposes a greater degree of 
order and equality in things than it really finds." 

"Faced with too strong a flow of information, man can filter and recode up to a certain 
degree; soon he switches to random sampling of information; and from there to complete con- 
fusion is but one step." 

At times there has been a strong temptation to "Suppose a greater degree of order and 
equality" (and of utility) in the development of analogies and dichotomies, involving probabilis- 
tic and deterministic descriptions for acoustics and electromagnetics, and in the examination 
of physical processes as information, communications or decision channels.   Equally strong 
at other times has been a sense of "complete confusion" associated with the attempts to keep 
pace with the many spoken and written pronouncements and the instrumental contributions 
which are steadily increasing year by year.   Whatever "order and equality" exist, are largely 
and necessarily within generalized relationships rather than in specific details.   Once this 
restriction is recognized  .nd accepted, it is then possible to derive pragmatic guidelines to 
questions which should be raised and which must be answered when specific problems are 
analyzed.   Examples of such questions are- 

What are the basic commodities associated with the information processes?   Have they 
been described completely and efficiently in terms which may be observed and measured? 
Are the mathematical concepts consistent with the physical proceetjes?  What are the pos- 
sible consequences of uncertainties, exclusions, and constrair-id? 

A brief review will be made of some of the major elements of the entire survey in order 
to illustrate the nature, use, and limitations of these guidelines. 

In the initial sections a number of descriptions of functions wer? discussed.   An important 
class involved statistical representations.   Such deacriptions may arise in problems where the 
only available data are statistical in nature, or in problems where it is convenient and possible 
to use averages, or probability distributions.   For example, when large numbers of states exist, 
if all the details were to be included the resulting complexity of the representation may be too 
great to be useful.   The basis for statistical descriptions rests ultimately on the validity of 
assumptions made of regularity and stationarity within relative scales of time and precision 
characterizing a particular problem.   Probabflity distribution functions, and probability density 
functions — the derivative of the distribution — are commonly used.   The charactc istic func- 
tion, which is the Fourier transform of the density function provides another measure.   One of 
its features in conjunction with multiple variables is that by working with the characteristic 
function n-fold integrations may br. i eplaced by multiplication operations.   Practically, the 
distribution density, and characteristic functions provide more readily derivable and simpli- 
fied measures such as the (averages) moments of the positive integral powers of the random 
variablee 

Although readily derivable and useful in many operations, averages do not serve to "rep- 
resent" signals, or processes.   Statistical measures which retain utilitarian features and 
which do contain other features of signals and their interrelationships are correlation func- 
tions and power spectra.   Correlation relates the linear dependence between two variables, and 
if the correlation is zero, the variables are linearly independent -- however, a more detailed 
examination is required in order to determine whether the variables are statistically independent. 

190 
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The examination may encompass higher moments of the probabilUy density function.   The mean 
spectral correlation function establishes the relation between phase coherence and the variation 
of the mean-square value of a variable as a function of time.   The mean powei  spectrum is 
related to the correlr.tion function through the Fourier transform, and the use of correlation or 
spectral analysis often may depend on instrumentation considerations, since in theory   the 
conjugate relationship indicates that they are "equivalent" descriptions.   Thus   whc-" working 
wuh very low audio frequencies, correlators which employ delay lines may be'built'more 
economically than spectrum analyzers. 

As noted earlier, statistical and probabilistic descriptions are employed to simplifv reo- 
resentations involving large numbers of states particularly when the descriptions can be made 
numerically.   Because they are not strongly associated with specific features of signals and 
physical processes, analysis techniques may be and have been drawn from many areas    This 
does not minimize, however, the requirements for making a detailed physical fjialysis of each 
application to ensure, for example, that variables may be treated «s being stallsticaUv inde- 
pendent.   This requirement is even more important when other generalized measures such as 
entropy and information are employed.   Entropy and Informational concepts permits quantita- 
tive statements regaroing probabilities of attributes regardless of what the attrlboies may be. 

Although statistical relationships have been stressed, predictable or determlnJstic func- 
tions are often used - in fact, most problem? involve an interplay among variables whlrh 
require both types.   Of great importance as tools for representation and analysis of both tvnes 
are Fourier methods.   The primary descriptions of a periodic function are Its Fourier series 
^-t11"! SrCtJa' J^ f0.rumer iS a dtCOir'!,r'i:t!on lnto lln«"->y »*"tive trigonometric term« e'      which indicate how the various hi.   v.omc tc-ms contribute to the overall structur. of th«. 
function    If the coefficients of a harmonic series expansion are cho^n to ^ FoS coe f 
cients, then the mean iquare error will have Its smallest possible value.   Since this criterion 
results in Parseval's theorem - Fourier representations show how energy is IS-Sted* 
frequency.   Despite widespread use in analysis there Is so. -ething dlsturbl,     .bout structural 
elements which are supposed to last forever.   Real signals a.     of course   UmHed in their 
duration, and real components are restricted In bandwidth.   The Imoosition of an e.art hlnrf 
width limit implies that the only values of the fonotlon W»« ÄSSS, tSTKSSi 

mes.   Hence   different functions which take on the same values at these tlmes^e not dis- 
tinguishable after being processed by an ideal fUter.   Although a bandwidth limlt'uon perm'ts 
a continuous  unction to be replaced by an enumerable sequence of sample value   ambl/uuTet 
are "created" in the process.   Similarly if the limit Is In lime, then a continuous ^1^ may 
be expressed in terms of an equivalent line spectrum - and ui only values ^3 Let rum 
which are taken into account are those at discrete frequencies. »pecirum 

For a signal which is restricted in time (T) and bandwidth ft), a fundamenlal D       loie 
states that WT sample values may be used to represent the signal    ^SESirtwöÄ 
only approximately true since there will be energy associated tlth the signal beyond the Urne 
interval  CD  and the band  (W).   The magnltucio of this energy Is a measure of the „ror   aTd 
although its magnitude relative to the total energy may be .Sail especuUy for 1^ g"valuS of 
w and T, there still may be sizeable effects produced, for example?^ the bound^fes 

tification, although it does^ermit placing a^^Ä^^^ o^s^uSr 
anes imposed jointly In conjugate domalna, such as time and fr '4ue.xy, tTw rertHct o^form- 
ng certain functions simultaneously.   Thus, the ability to determine Si arHvaf Urne and 

Ä eSÄSre ofÄSä ha8 ^r PrOP^ted by ■ ^«'-HnmedcSeVu established ««^ u   fl       w       ,.    boundaries, and In any event may be observed only to the extent per- 
"equfney       relatl0nshiP &t Af * *' ^"e A. and Af url »he indetcrmSci;.?« tfme and 

oracScal^uX^luZ^ %*** ****** " •«*« be possible to obtain much of practical value lor the solution of problems of greater complexity characterized bv hiirhPr 
dimensionality, multiple boundaries, and with a requiremem for ASfttd «LIAS 
multiple tasks.   Fortunately, some of the basic concepts appear to SSTSSSSÜ to such Tases. 
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FOI' apaU:ll problr.ro::, Fourier mct!:ocl" . c r('&tr lcted to re~lons whc1·c the wavefront does n(ll 
ce..e with the ·lndepcnt!~nt a.pati~l variallle. 

WIM!a tl&c lq)ut to 3 cons tant coef!iciert linea:- component !s a l' f:'rlodlc function of time or 
~pace MYln& a Fourier set·les wt·kh converges, the st<:ndv-stale <~utput wlll be a :1othcr pcriorlic 
feneUoa o[ Ume or space whose Four iet :.erie& Is that or the input modified only in amplitudt! 
.S phase. Tbe effeet of lhc: compone~t on the input Is ;ivcn by the trnn!1fEr funct iun. A linear 
eomponeDt m&J a~:oo be deserlbe\i by l'..s rc&pOnse to an iMpulse. The output w!lJ tht> n be a ,.a.e whose r.,ec-trutl'l lr.:Oedls the ;:.mplitude and pbase ._ l ·: ~ r :o:terastics or the network. For a 
l!plltlal elomelll, the Ani410if is the respons~ 0: the elel'l!. nt to a point aource. The impulse 
NlpOUe and transfr.r function (a!z>w ulled system fu11ct'on) arc Fourier conjugates. Wben the 
llput to a linear f'lE'menl is a transient, the spectrum of the output ts the proouc~ or the spec
tnm or the ll"lput and tile •J.t•m function. 

Ia applleatlone tbe \IN ~r hnpulse11 (ur point SOltY'~e• for epatlal elements) Is ordluarlly 
...... dtftlcult to lnstNIIlent thar. the lnstrumentauor. att'.l the experlmen•.al pt-oeedur~s required 
.. determJ• e :he ay&tem function. Some of the dlaadvantagea are the possible overloading of 
.. element, and lbe lnh'!rently poor &enslt1Ylt1 at the lower rrequende11. It Is alao possible to 
... the .aer fUIIdloe response, which, for a Uaeear c:omponut Ia the lntt>gral of the lmpulso 
.....,.. •• WMn U. reaponae (\fan ~lement to an Impulse Is known It ls possible to derive tbe 
n•oMe to U)' arblli'IU'J lllJUrce functiQn • 

.._ 1M ...,_ to • el,.aaeDt 1a nadom, eorrelaUoa analyses are uaeru&. Tbe oorrelallon ,_..loa CJI the ou"*' ~ U. element m.ly be abtalned bJ COftvolutln;,; dae eorrelat~oa funetlon ctf 
b ..,.a .. respoae with ~M correlatil.»n furt:Uon of tbe Input. A mathean.ltlclllly -:•Jivalent 
IIPI'•Nioh of Uda relaUonAJp 1.: th . power spectrum or the output of a linear system, in 
....,... lo a ,...._. lqaut ls equal to 1M quare ol tbe magnitude of the aystem runctlcn mul
u,tled a., tbe power lpednam of the input func:Uoll When thf IJ1)Ut funeUeu conalsh1 or "white" 
..ue, tbat U. ..ulonaJr dtJitrlbuted In fnqucq, lhe impulse response of :he ~tystem is tho 
cnucorrela6loP bllwe• tt.a lr.put and out&* dtvkled b7 the power ..,ec:trum of the r.ol11e -
wtdclt, for ftlle _..._., wUI be a eo.taat. 

rn.uy e~lla .._. far las been plaeecl on the IMerMc:tlons between tbe Input signal 
lltnc:t.e and tl>~t llnr.ar 8J8leiD ~:.s lndicr.ted b)' Uae &ti'Tict~•ral modiflcaUona lrt1icaled at the 
........_ LtaearitJ lD ..e~foa with the ue o! orthogonal eomponenh• afl atructural elP.m~nt• 
flldlu.tea enerCJ ~serv.;t..,. ulterla •"~~ fuUilllng boundary eoftf.tllions. Fur l!lany lmport~nt fi'GC•• .. •• llowever, Mlalt!n&lnclhe lo.t .f lllplal enerp may btl an Inadequate assessment of ,. ... .-ac.. Ia allllple cleCedJon proble • .a It ta Mees:oa1·y .,n:y to determine the exbtence ot 
a ,...ueular elgnal, and bowledge of tile 8lpal e1.erp anc: •nne measure or the blterret·ence 
,eraalta quantitative ftalualloD cf detection performanee. If .urc:clent information Is available 
.... rd&Dc ala~ llllerfereace, tlaen tile deteetloa erAteriua maJ be e>tended to lnclu'Je the occ:ur
..-ee ·a~ falae alar•• ft!!lted to the probaLiUty of detection. As was ewldent frQm the early 
81dloall of tiK: wne,, tbere are m:t~~y forma wblc:h "aJsnals" aDd "&nterferenee" may assun.e
..., IDIIImd8 bJ "'*• IM1r ftl'lous elaaraderlatlca may be deacrlbcd, and th<>re are many 
tub'Widell IIIUt be perfonled. I• addlU~ to determining the exiatenee of a signal, :he spa.tlal 
...... ._ fJI till tarpt wldell may be refledJiw or radlat\111 alpal energy - ls requlr~d, along 
.... ...,. .. euacea. d loutiOil. ldttaatUleaiJon DaaJ be auade lD ltrms of ~p:dla' c;;tc"'· shapo, 
Mil telllporal dlu&ea fJI tbe,. ctu.rac:tulstlca. Interference anay orlcl,.te from wJthin the 
neeiYer eomponente, • IUJ be eaused by a~~predictable nuctuaUona of propagating conditions 
..... tile anedium or CJI tile boundarlefi. ....._ a •J•em Is lmended lo encorn;>ass a wide r ... e 
.,II)'Mialc ..Ulloa .- K I• ewldeDl that ..... -lo-110lae formulations ue lnadeqaaate. 
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E~l'l~ &' it w •• s in• i :' 't'C 11, ·•; 'H'< prr.! > ~.!,i li : lic ••::"t•: ;: r i"f, '. : <'J n 11 11 t•ma te> l) :i.!'S( t I c,l 
Wltll f\hy .· ll,:,\1 &t' ibUlP •. l \ ,' l(l <.: ,,,., . tl , . -!j \.1 . • ity •>f ('Xf<. lt :. t l il l J ;)Ill: ('t~•• tr\ 11.. ··- ' ·!\•" , 

nrJoyui ,,.h~ ., the p; oblcnt:.. JJ ~ . ,. ··d l' !·.t• J•t 'll'll s <lilt n;ul iph \ ~d l: lJI ~ •. 01 1 • · 1 t •·! <: ! '. 

I tropy 1tn1 i1 (!) j'JI};Ill t 'J ha .: , :od(' , (i •Jioi\ l \ iJ'IUl or q lol!ll ilo iv , ,\· i ll( t' l' ) ' •1:\tlfl[• )J ,I,, • 'It~; \ s; 
l hese 1• 1 · ~ . · l'· 5 b·•h,l. !' :."' !.i.ti I' })' :m . rl ol' l l t•) Il l\ ~ :· vt' or :tlt r i'> \ ·• De r i.. tH \ t • lr :: :· l!ll !' h 

\. ·t ill! th bf ole> :'l h ,,al!Olt!> fu •·l h•'l' IJ) i: ::!.tdin,. . J•.n·: o( lh ((J ."I II U\; t n, Oi lltC a' '(lh '' l':. l !:"11< , 

fcaturt!t; a-. (b(> U ;,..' or :1 Pl ' iO: l U l ! t •. m .• : t l) tl tiH( ·tU<llltil tij\t' s :o;e ·; ~n 'Ill. I( p€'1 f(h ' lt n I ll''. ;wr. 

ftlst a . Surne of thi!sc asSI." !-: ,).-.. : , :11:1.' IJ· deri <•<.Illy :1pptyi • ·~ jgu .tl- to-~:ul : · c <'I'l l ·" ' ! ;• 11 im:· 
Yi<iual ta~ • s. IIOW{> Vt ·r, d~ ' h o h~l ':• v ;· ohit.S., n !Jl'C c t i:,<! a;1j c ~" .plelcJ cv alw th n s1l l'f' 
aaore of the il&llJOl'l::ml r ... to&s ttl'&! nduc!<>d a r a:. lllh-&ral p:l. t (){ tht• desc l'ip•lon. 

,.. lbe problems r; row lo cnco. p:t~; ;-; the greater t'OUtjJlcxHy ·f t;par.C' - tln1f' proJcf' ,, t!li · 

information "fields" - some ro•• l'ptu;.t eorrespo ,:t•ucc sU I r~u aim.: 1 clwceu naclhods em· 
,aoyed for the simpler elc..nrnl ·,and t1.1• mcthi)C.ls which arc nc '6»ary tor the murc con.pli· 
cated ea~~es. Bhnpllfied quantitative mcat'uter may be ulJlain--·tl (&·om Hpacc - ti tC samplin ~ . 
..,. .... ume eor.-..laUon (unctions. •~ t;pace-ttml' ambit~• • ity fu11ctlons. Dett>rministk .utd 
proiJablllatk meaaul'£·8 along wit~. entruph.: and infoa·m;tlional mea~:~urcs n1ay be emptoyt•d aud 
lor reaaons similar to those glw•n In !:t~ -;Rrlier &t'ctlon~. A powerful ecncrallz.aUon wh\rh 
eaeompaues manr physictl processet. - ac~oustlc;,l '""! t!la~clruma~ncti<: - is cuntalnec! in dte 
reeor.nltlon that IInke bounds exist ora lhl' total information, ln!•Jr:r..~~~u .. a· .. t~, 11~ infol' Ul.llion 
.,._slty." UIUmatP lhnlts of observation and hence of det>t~riptions, arlsr. from tit,-, inlea·pla)· 
between bllormatlon and entropy, between wh,..t Ia koown and wh3t is unknown. Physical proc
enes maJ DOt be observed t.r.d hence mP)' nol b,J represented ifl lnUnile dctnil while still prl'
eerYIIli the features upon wh.: ~a the ob.;erwation rule!! ~re baRett Although a com1)tet ~ ~MlpJis 
Ia DOt always JusUfiecl, rc~nlt ion ot tile haslc a·ule' can Pt'OVIde ~ui~ea lcad1ng to a nH'Ire 
eceaomlcal utlUatioP ol tlae awatlablt- commodltit:~~.o 

ftla IIUney repreaents a lira aep- an iniUPI prob~, and although a larse numlwr or 
facets laave been dlseuued - •an:r other» ba\c been omitted. Hopefut!y, ll wlll &el'V&~ lo sllm
.aMe adctlt&onal effort, and even an it• present fot'l4 1l wm provide a useful reference lrame
.-ork wltiUn wblcl& anal)'tical and lDitrwn~ntal concepts ol importance ire ,.,. .. ,. time proceaaca 
•AJ be exa~alnecl and evaluated. 

• • • 


